

FEATURES

- 8-bit flash A/D converter
- 20MHz sampling rate
- 10MHz full-power bandwidth
- Sample-hold not required
- Low power CMOS
- +5Vdc operation
- 1.2 Micron CMOS
- 8-Bit latched outputs
- Surface-mount version
- No missing codes

PRODUCT OVERVIEW

The ADC-208A utilizes an advanced VLSI 1.2 micron CMOS in providing 20MHz sampling rates at 8-bits. The flexibility of the design architecture and process delivers latch-up free operation without external components and operation over the full military range.

The ADC-208A is mechanically and electrically equivalent to the ADC-208 Series, with the exception of the OVERFLOW (pin 13) and ENABLE (pins 11 and 12) functions. These functions are not offered on the ADC-208A.

INPUT/OUTPUT CONNECTIONS					
Pin	FUNCTION	Pin	FUNCTION		
1	VDD	24	BIT 8 (LSB)		
2	CLOCK INPUT	23	BIT 7		
3	-REFERENCE	22	BIT 6		
4	ANA/DIG GND (VSS)	21	BIT 5		
5	ANALOG INPUT	20	REF 1/4 FS		
6	REF MIDPOINT	19	VDD		
7	ANALOG INPUT	18	REF 3/4 FS		
8	ANA/DIG GND (VSS)	17	BIT 4		
9	+REFERENCE	16	BIT 3		
10	VDD	15	BIT 2		
11	N.C.	14	BIT 1 (MSB)		
12	N.C.	13	N.C.		

Figure 1. ADC-208A Block Diagram

8-Bit, 20MSPS CMOS Flash A/D (ADC-208 Compatible)

ABSOLUTE MAXIMUM RATINGS				
PARAMETERS	LIMITS	UNITS		
Power Supply Voltage (V _{DD} Pin 1, 10, 19)	-0.5 to +7	Volts		
Digital Inputs	-0.5 to +5.5	Volts		
Analog Input	-0.5 to $(+V_{DD} + 0.5)$	Volts		
Reference Inputs	-0.5 to +V _{DD}	Volts		
Digital Outputs (short circuit protected to ground)	-0.5 to +5.5	Volts		
Lead Temperature (10 sec. max.)	+300	°C		
Storage Temperature	-65 to +150	°C		

FUNCTIONAL SPECIFICATIONS

(Typical at +5V power, +25°C, 20MHz clock, +REFERENCE = +5V, -REFERENCE = ground, unless noted)

ANALOG INPUT	MIN.	TYP.	MAX.	UNITS	
Single-Ended, Non-Isolated Input Range DC - 20MHz	0	_	+5.0	Volts	
Analog Input Capacitance					
(static - Pin 5 to 7)	-	20	-	pF	
(dynamic - Pin 5 to 7)	-	64	-	pF	
Reference Ladder Resistance	_	500	-	Ohms	
Reference Input (Note 5)	-0.5	-	VDD +0.5	Volts	
DIGITAL INPUTS					
Logic Levels					
Logic "1"	3.2	_	_	Volts	
Logic "0"	_	_	0.8	Volts	
Logic Loading					
Logic Loading "1"	_	+1	+5	μΑ	
Logic Loading "0"	_	+1	+5	μΑ	
Clock Low Pulse Width	15	25	_	nSec	
DIGITAL OUTPUTS					
Logic Levels					
Logic "1"	2.4	4.5	5.0	Volts	
Logic "0"	_	_	0.4	Volts	
Logic Loading					
Logic Loading "1"	4	_	_	mA	
Logic Loading "0"	4	_	_	mA	
Output Data Valid Delay From					
Rising Clock Edge					
99% probability	5	10	15	nSec	
100% probability					
+25°C	5	10	25	nSec	
-55°C to +125°C	_	_	40	nSec	
Data Output Resolution	8	_	_	Bits	
Data Coding	Straight binary				
PERFORMANCE					
Sampling Rate ②	15	20	_	MSPS	
Full Power Bandwidth	10	_	_	MHz	
Diff. Linearity @ +25°C (See tech note 7)					
Code Transitions	_	±0.5	±1.0	LSB	
Center of Codes	_	±0.25	_	LSB	
Diff. Linearity Over Temp.					
Code Transitions	_	±0.5	±1.0	LSB	
Center of Codes		±0.25	_	LSB	
Int. Linearity @ +25°C (See tech note 4)(ref. adjusted)					
End-point	_	_	±1/2	LSB	

Best-fit Line	_	_	±1/2	LSB	
Int. Linearity Over Temp.					
(ref. adjusted)					
Best-fit Line	_	±1/2	±1	LSB	
PERFORMANCE	MIN.	TYP.	MAX.	UNITS	
Int. Linearity @ +25°C (ref. unadju	sted)				
End-point	_	±2	±2.6	LSB	
Best-fit Line	_	±1.6	±1.9	LSB	
Int. Linearity Over Temp. (ref. unad	ljusted)				
End-point	_	±2.3	±2.6	LSB	
Best-fit Line	_	±1.8	±2.0	LSB	
Zero-Scale Offset	_	±1	±2	LSB	
(Code "0" to "1" transition)					
Gain Error	_	±1.5	±3	LSB	
Differential Gain ③		2		%	
Differential Phase ③		1.1	_	degrees	
Aperture Delay	_	8	_	ns	
Aperture Jitter	_	50	_	ps	
Harmonic Distortion (8MHz second	d order harm	1.)			
	-40	-46	_	dB	
Ref. bandwidth (See tech note 5)	_	10	_	MHz	
Power Supply Rejection	_	±0.02	±0.05	%FSR/%V	
No Missing Codes	Over t	he operating	temperature	range	
POWER REQUIREMENTS			<u>.</u>		
Power Supply Range (+VDD)	+3.0	+5.0	+5.5	Volts	
Power Supply Current					
+25°C	_	+45	+65	mA	
+85°C	_	+40	+60	mA	
-40°C	_	+50	+70	mA	
+125°C	_	+40	+60	mA	
–55°C	_	+50	+70	mA	
Power Dissipation					
+25°C	_	225	325	mW	
+85°C	_	200	300	mW	
-40°C	_	250	350	mW	
+125°C	_	200	300	mW	
–55°C	_	250	350	mW	
PHYSICAL/ENVIRONMENTAL					
Operating Temp. Range, Case:					
MC/LC Versions	0	_	+70	°C	
MC-C/LC-C Versions	0	_	+70	°C	
ME/LE Versions	-40	_	+100	°C	
ME-C/LE-C Versions	-40	_	+100	°C	
MM/LM/QL Versions	-55	_	+125	°C	
MM-C/LM-C/QL-C Versions	-55	_	+125	°C	
Storage Temp. Range	-65	_	+150	°C	
J	Package Type DIP 24-pin ceramic DIP LCC 24-pin ceramic LCC				

Footnotes:

- $\ensuremath{\textcircled{1}}$ Maximum input impedance is a function of clock frequency.
- ② At full-power input.
- ③ For 10-step, 40 IRE NTSC ramp test.

TECHNICAL NOTES

- The Reference ladder is floating with respect to VDD and may be referenced anywhere within the specified limits. AC modulation of the reference voltage may also be utilized; contact DATEL for further information.
- Clock Pulse Width To improve performance when input signals may exceed Nyquist bandwidths, the clock duty cycle can be adjusted so that the low portion (sample mode) of the clock pulse is 15nSec wide. Reducing the sampling time period minimizes the amount the input voltage slews and prevents the comparators from saturating.
- 3. A full-scale input produces all "1" on the data outputs.
- 4. DATEL uses the conservative definitions when specifying Intergal Linearity (end-point) and Differential Linearity (code transition). The specifications using the less conservative definition have also been provided as a comparative specification for products specified this way.
- The process that is used to fabricate the ADC-208A eliminates the latchup phenomena that has plagued CMOS devices in the past. These converters do not require external protection diodes.
- For clock rates less than 100kHz, there may be some degradation in offset and differential nonlinearity. Performance may be improved by increasing the clock duty cycle (decreasing the time spent in the sample mode).
- 7. Connect the converter appropriately; a typical connection circuit is shown in Figure 2. Then apply an appropriate clock input. The reference input should be held to $\pm 0.1\%$ accuracy or better. Do not use the +5V power supply as a reference without precision regulation and high-frequency decoupling capacitors.
- 8. Zero Adjustment Adjusting the voltage at -REFERENCE (pin 3) adjusts the offset or zero of the device. Pin 3 can be tied to GROUND for operation without adjustments
- 9. Full Scale Adjustment Adjusting the voltage at +REFERENCE (pin 9) adjusts the gain of the device. Pin 9 can be tied directly to a +5V reference for operation without adjustment. 10. Integral Nonlinearity Adjustments Provision is made for optional adjustment of Integral Nonlinearity through access of the reference's $\frac{1}{2}$, $\frac{1}{2}$, and $\frac{3}{2}$ full scale points. For example, the REF. MIDPOINT (pin 6) can be tied to a precision voltage halfway between +REFERENCE and -REFERENCE. Pins 6, 18 and 20 should be bypassed to GROUND through $0.1\mu\text{F}$ capacitors for operation without INL adjustments

Table 1. ADC-208A Output Code

ANALOG INPUT	CODE	DATA 1234	DATA 5678	DECIMAL	HEX
0.00V	Zero 0000	0000	0000	0	00
+0.02V	+1 LSB	0000	0001	1	01
+1.28V	+¼ FS	0100	0000	64	40
+2.54V	+½ FS-ILSB	0111	1111	127	7F
+2.56V	+½ FS	1000	0000	128	80
+2.58V	+½ FS+ILSB	1000	0001	129	81
+3.84V	+¾ FS	1100	0000	192	C0
+5.10V	+FS	1111	1111	255	FF

Note: Values shown here are for a +5.12Vdc reference. Scale other refereces proportionally. (+REF=+5.12V, -REF=GND, $\frac{1}{2}$ N, $\frac{1}{2}$ N, and $\frac{1}{2}$ References FS=No Connection)

Figure 2. ADC-208A Typical Connection Diagram

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 USA • Tel: (508) 339-3000 • www.datel.com • e-mail: help@datel.com

MECHNICAL DIMENSIONS

Figure 3. Timing Diagram

ORDERING INFORMATION

MODEL	TEMP. RANGE	PACKAGE	ROHS
ADC-208AMC	0°C to +70°C	24-pin DIP	No
ADC-208AMC-C	0°C to +70°C	24-pin DIP	Yes
ADC-208AME	-40°C to +100°C	24-pin DIP	No
ADC-208AME-C	-40°C to +100°C	24-pin DIP	Yes
ADC-208AMM	−55°C to +125°C	24-pin DIP	No
ADC-208AMM-C	−55°C to +125°C	24-pin DIP	Yes
ADC-208AMM-QL	−55°C to +125°C	24-pin DIP	No
ADC-208AMM-QL-C	−55°C to +125°C	24-pin DIP	Yes
ADC-208ALC	0°C to +70°C	24-pin LCC	No
ADC-208ALC-C	0°C to +70°C	24-pin LCC	Yes
ADC-208ALE	-40°C to +100°C	24-pin LCC	No
ADC-208ALE-C	-40°C to +100°C	24-pin LCC	Yes
ADC-208ALM	−55°C to +125°C	24-pin LCC	No
ADC-208ALM-C	−55°C to +125°C	24-pin LCC	Yes
ADC-208ALM-QL	-55°C to +125°C	24-pin LCC	No
ADC-208ALM-QL-C	-55°C to +125°C	24-pin LCC	Yes

DATEL is a registered trademark of DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 USA ITAR and ISO 9001/14001 REGISTERED

DATEL, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.

© 2015 DATEL, Inc.