

Up to 10 Watt DC-DC Converter

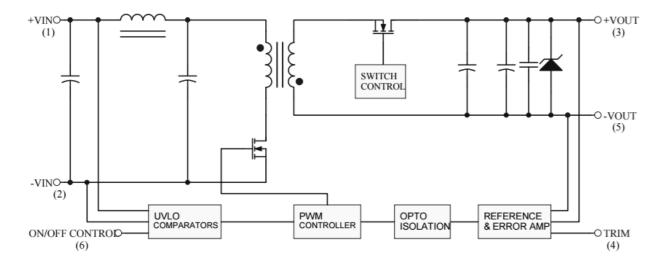
FEATURES

- Industry standard footprint (1 inch X 1 inch)
- Regulated Outputs, Fixed Switching Frequency
- Up to 87 % Efficiency
- Low No Load Power Consumption
- Designed for use without tantalum capacitors
- -40°C to +85°C industrial temperature range
- Negative and positive On/Off logic control, Trim options
- Continuous Short Circuit Protection
- Sense Compensation, Over-temperature protection
- Over-current and output 0V protection
- Designed to meet conductive EMI EN55022 class A without external components

PRODUCT OVERVIEW

The AA series offer 10 watts of output power in standard 1.00 x 1.00 x 0.4 inches packages. This series features high efficiency and 1500 Volts of DC isolation. The AA series provides a 2:1 wide input voltage range of 4.7-9, 9-18, 18-36 or 36-75 VDC, and delivers a precisely regulated output. These modules operate over the ambient operating temperature range of -40° C to $+85^{\circ}$ C. All devices offer input Under Voltage Lock Out (UVLO), output over-current and are protected against over-voltage, continuous short circuit conditions and over-temperature. They are designed to be used without tantalum capacitors. In addition, the standard control functions of this series include Remote On/Off and adjustable output voltage.

APPLICATIONS:


- Distributed Power Architectures
- Mobile telecommunication
- Industrial applications
- Battery operated equipment

AVAILABLE OPTIONS

- Customizable output voltages
- CE Mark 2004/108/EC certification
- UL60950-1, EN60950-1, and IEC60950-1 safety

Contact DATEL for other series of in 1" x 1" footprint, 4:1 Input Ranges, Cost Saving, Lower Power, different output voltage, etc.

Block Diagram

Up to 10 Watt DC-DC Converter

MODEL DESIGNATIONS

MODEL NUMBER	INPUT VOLTAGE	OUTPUT VOLTAGE	OUTPUT CURRENT MAX	EFFICIENCY %	LOAD REGULATION	OPTIONS
AA5S3.3-2.5	4.7-9 VDC	3.3VDC	2.5 A	87	± 0.2 %	S
AA5S5-2	4.7-9 VDC	5.0 VDC	2 A	87	± 0.2 %	S
AA5S12-0.83	4.7-9 VDC	12 VDC	0.833 A	87	± 0.2 %	S
AA5S15-0.66	4.7-9 VDC	15 VDC	0.666 A	87	± 0.2 %	S
AA5D5-1	4.7-9 VDC	±5.0 VDC	±1 A	85	± 1 %	S
AA5D12-0.41	4.7-9 VDC	±12 VDC	±0.41 A	87	± 1 %	S
AA5D15-0.33	18-36 VDC	±15 VDC	±0.33 A	87	± 1 %	S
AA12S3.3-2.5	9-18 VDC	3.3VDC	2.5 A	82	± 0.2 %	S
AA12S5-2	9-18 VDC	5.0 VDC	2 A	85	± 0.2 %	S
AA12S12-0.83	9-18 VDC	12 VDC	0.833 A	87	± 0.2 %	S
AA12S15-0.66	9-18 VDC	15 VDC	0.666 A	87	± 0.2 %	S
AA12D5-1	9-18 VDC	±5.0 VDC	±1 A	85	± 1 %	S
AA12D12-0.41	9-18 VDC	±12 VDC	±0.41 A	87	± 1 %	S
AA12D15-0.33	18-36 VDC	±15 VDC	±0.33 A	87	± 1 %	S
AA24S3.3-2.5	18-36 VDC	3.3VDC	2.5 A	82	± 0.2 %	S
AA24S5-2	18-36 VDC	5.0 VDC	2 A	85	± 0.2 %	S
AA24S12-0.83	18-36 VDC	12 VDC	0.833 A	87	± 0.2 %	S
AA24S15-0.66	18-36 VDC	15 VDC	0.666 A	87	± 0.2 %	S
AA24D5-1	18-36 VDC	±5.0 VDC	1 A	85	± 1 %	S
AA24D12-0.41	18-36 VDC	±12 VDC	±0.41 A	87	± 1 %	S
AA24D15-0.33	18-36 VDC	±15 VDC	±0.33 A	87	± 1 %	S
AA48S3.3-2.5	36-75VDC	3.3 VDC	2.5 A	81	± 0.2 %	S
AA485S5-2	36-75VDC	5 VDC	2 A	85	± 0.2 %	S
AA48S12-0.83	36-75VDC	12 VDC	0.83 A	87	± 0.2 %	S
AA48S15-0.66	36-75VDC	15 VDC	0.66A	87	± 0.1 %	S
AA48D5-1	36-75VDC	±5.0 VDC	1 A	85	± 1 %	S
AA48D12-0.41	36-75VDC	±12 VDC	±0.41 A	87	± 1 %	S
AA48D15-0.33	36-75VDC	±15 VDC	±0.33 A	87	± 1 %	S

ABSOLUTE MAXIMUM RATINGS

PARAMETER	CONDITIONS	MODEL	Min.	Typical	Max.	Units
Input Voltage						
Continuous	DC	5Vin 12Vin 24Vin 48Vin	4.7 9 18 36		9 18 36 75	Volts
Transient	100ms, DC	5Vin 12Vin 24V _{in} 48V _{in}			12 25 50 100	Volts
Operating Ambient Temperature	Derating, Above 51°C	All	-40		+85	°C
Case Temperature		All			+105	°C
Storage Temperature		All	-55		+125	°C
Input / Output Isolation Voltage	1 minute	All			1500	Volts

Up to 10 Watt DC-DC Converter

INPUT CHARACTERISTICS

Note: All specifications are typical at nominal input, full load at 25°C unless otherwise noted

PARAMETER	CONDITIONS	MODEL	Min.	Typical	Max.	Units
		5Vin	4.7	5	9	
Operating Input Voltage		12Vin	9	12	18	Volts
operating input voltage		24V _{in}	18	24	36	VUILO
		48V _{in}	36	48	75	
nput Under Voltage Lockout						
		5Vin	4.2	4.4	4.6	
Turn-On Voltage Threshold		12Vin	8.0	8.5	9.0	
Turr-on voltage Tireshold		$24V_{\text{in}}$	16.5	17	17.5	Volts
		48V _{in}	33.5	34	34.5	
		5Vin	4	4.2	4.4	Volts
Turn-Off Voltage Threshold		12Vin	7.7	8	8.3	
rum on voltago miloonola		24V _{in}	15.5	16	16.7	
		48V _{in}	32.5	33	33.5	
		5Vin		0.3		
Lockout Hysteresis Voltage		12Vin		5		Volts
Lookout Hysteresis voltage		24V _{in}		1		VOILO
		48V _{in}		1		
	100% Load, Vin =5V	5Vin			2700	
Maximum Innut Current	100% Load, Vin =12V	12Vin			1350	m A
Maximum Input Current	100% Load, V _{in} =18V	24Vin			675	mA
	100% Load, V _{in} =36V	48Vin			338	
		AA5S3.3-2.5		120		
		AA5S5-2		120		
		AA5S12-0.83		50		
		AA5S15-0.66		50		
		AA5D5-1		50		
		AA5D12-0.41		50		
		AA5D15-0.33		50		
		AA12S3.3-2.5		30		
		AA12S5-2		30		
		AA12S12-0.83		30		
		AA12S15-0.66		35		
		AA12D5-1		45		
		AA12D12-0.41		45		
No-Load Input Current	V _{in} =Nominal input	AA12D15-0.33		45		mA
NO-Load Input Guirent	V _{in} =Normilal input	AA24S3.3-2.5		25		IIIA
		AA24S5-2		25		
		AA24S12-0.83		25		
		AA24S15-0.66		25		
		AA24D5-1		25		
		AA24D12-0.41		25		
		AA24D15-0.33		25		
		AA48S3.3-2.5		20		
		AA48S5-2		20		
		AA48S12-0.83		20		
		AA48S15-0.66		20		
		AA48D5-1		20		
		AA48D12-0.41		20		
		AA48D15-0.33		20		
nrush Current (I²t)	As per ETS300 132-2	All			0.1	A ² s

Up to 10 Watt DC-DC Converter

OUTPUT CHARACTERISTIC

PARAMETER	CONDITIONS	MODEL	Min.	Typical	Max.	Units
		Vo=3.3	3.2505	3.3	3.3495	
		Vo=5.0	4.925	5	5.075	
		Vo=12	11.82	12	12.18	
Output Voltage Set Point	V_{in} =Nominal V_{in} , $I_o = I_{o_max}$, $Tc = 25^{\circ}C$	Vo=15	14.775	15	15.225	Volts
		Vo=±5.0	4.925	5	5.075	
		Vo=±12	11.82	12	12.18	
		Vo=±15	14.775	15	15.225	
Output Voltage Regulation		T		1	1	
		Single DIP			±0.2	%
Line Regulation	V _{in} =High line to Low line Full Load	Single SMD			±0.3	%
		Dual			±0.5	70
		Single DIP			±0.2	%
Load Regulation	I₀ = Full Load to min. Load	Single SMD			±0.5	%
		Dual			±1.0	
Cross Regulation	Load cross variation 10%/100%	Dual			±5	%
Temperature Coefficient	TC=-40°C to 80°C				±0.03	%/°C
Output Voltage Ripple and Noise				T	1	
Peak-to-Peak	Full Load	DIP			50	mV
Реак-10-Реак	Full Load	SMD			100	IIIV
		Vo=3.3V	0		2500	
		Vo=5V	0		2000	
		Vo=12V	0		833	
Operating Output Current Range		Vo=15V	0		666	mA
		Vo=±5V	0		±1000	
		Vo=±12V	0		±416	
		Vo=±15V	0		±330	
Output DC Current-Limit Inception	Output Voltage=90% V _{0, nominal}		110	130	140	%
		Vo=3.3V			2470	_
		Vo=5V			2000	
		Vo=12V			940	
Maximum Output Capacitance	Full load, Resistance	Vo=15V			690	μF
		Vo=±5V			1000	
		Vo=±12V			440	
		Vo=±15V			330	

DYNAMIC CHARACTERISTICS

DIMANIO CHANACIENIO 1100								
PARAMETER	CONDITIONS	MODEL	Min.	Typical	Max.	Units		
Output Voltage Current Transient	0.1A/μs							
Step Change in Output Current	50% to 75% and 75% to 100% of I _{o_max}	All			±4	%		
Setting Time (within 1% Vonominal)	di/dt=0.1A/us	All			500	μs		
Turn-On Delay and Rise Time								
Turn-On Delay Time, From On/Off Control	$V_{\text{on/off}}$ to 10% $V_{\text{o_set}}$	All		10		ms		
Turn-On Delay Time, From Input	V _{in _min} to 10%V _{o_set}	All		10		ms		
Output Voltage Rise Time	10% V _{o_set} to 90% V _{o_set}	All		5		ms		

Up to 10 Watt DC-DC Converter

FEATURE CHARACTERISTICS

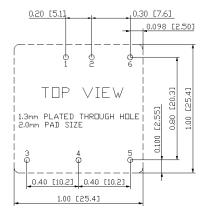
PARAMETER	CONDITIONS	Device	Min.	Typical	Max.	Units
		AA5S3.3-2.5		87		
		AA5S5-2	1 1	87		
		AA5S12-0.83	1 1	87		
	Vin =5 Volts, lo = lo_max, Tc=25°C	AA5S15-0.66	1 1	87		
		AA5D5-1	1 1	85		
		AA5D12-0.41	 	87		
		AA5D15-0.33	ł ŀ	87		
		AA12S3.3-2.5		82		
		AA12S5-2		85		
	Via 10 Valla la la man Ta 05°C	AA12S12-0.83		87		
	Vin =12 Volts, Io = Io_max, Tc=25 $^{\circ}$ C	AA12S15-0.66		87		
		AA12D5-1		85		
		AA12D12-0.41		87		0/
Efficiency 100% Load		AA12D15-0.33		87		%
		AA24S3.3-2.5		82		
		AA24S5-2		85		
		AA24S12-0.83		87		ļ
	$V_{in} = 24 \text{ Vdc}, I_o = I_{o_max}, Tc = 25^{\circ}C$	AA24S15-0.66		87		
		AA24D5-1		85		
		AA24D12-0.41		87		
		AA24D15-0.33		87		
		AA48S3.3-2.5		81		
		AA48S5-2		85		
	V 40 Vdo I I To 25°C	AA48S12-0.83		87 97		
	$V_{in} = 48 \text{ Vdc}, I_0 = I_{0_max}, Tc = 25^{\circ}C$	AA48S15-0.66 AA48D5-1		87 85		
		AA48D12-0.41		87		
		AA48D15-0.33		87		
ISOLATION CHARACTERISTICS			1			
Input to Output	1 minutes	All	1500			Volts
Isolation Resistance		All	1000			MΩ
Isolation Capacitance		All		1500		pF
Switching Frequency				350		KHz
On/Off Control, Positive Remote On/Off logic		r		1		
Logic High /Module Op)	V at 0.1A	All	5.5 or		75	Valta
Logic High (Module On)	V _{on/off} at I _{on/off} =0.1uA	All	Open Circuit		75	Volts
Logic Low (Module Off)	V _{on/off} at I _{on/off} =1.0mA	All	Oncuit		1.2	Volts
On/Off Current (for both remote on/off logic)	I _{on/off} at V _{on/off} =0V	All		0.3	1	mA
Leakage Current (for both remote on/off logic)	Logic High, V _{on/off} =15V	7.111		0.0	30	uA
Output Voltage Trim Range	Pout = max Rated Power		-10		+10	%
Off Converter Input Current		AA12 series		10	15	mA
On converter input current	Shutdown input idle current	others		5	10	mA
		Vo=3.3V		3.9		
		Vo=5.0V		6.2		
		Vo=12V		15		
Output Over Voltage Protection	Zener or TVS Clamp	Vo=15V		18		Volts
		Vo=±5V		±6.2		
		Vo=±12V		±15		
	1 100% (I T 0500	Vo=±15V		±18		-
MTBF	I _o =100% of I _{omax} ; Ta=25°C per MIL-HDBK-217F	All		1.2		M hours
Weight	per will-HDDK-2171	All		18.4		grams
Troigin	1	ΛII		10.7		granio

Up to 10 Watt DC-DC Converter

Operating Temperature Range

The AA series converters operate over a wide ambient temperature range from -40°C to +85°C (de-rating above +71°C). The module operate normally up to +105°C.

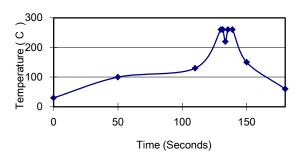
Remote On/Off


The AA series offers a Remote On/Off feature in order for the user to switch the module on and off electronically. All standard models are available as "positive logic" versions. The converter turns on if the Remote On/Off pin is high (Greater than 3.5VDC to 75VDC or open circuit). When the Remote On/Off pin is low (Less than 1.2VDC) the converter will turn off. The signal level of the Remote On/Off input is defined with respect to ground. If not using the Remote On/Off pin, leave the pin open and the converter will be on.

Over Current Protection

All models have internal over current and continuous short circuit protection. The unit operates normally once the fault condition is removed. At the point of current limit inception, the converter will go into hiccup mode protection.

Recommended Layout PCB Footprints and Soldering Information


The end user of the converter must ensure that other components and metal in the vicinity of the converter meet the spacing requirements to which the system is approved. Low resistance and low inductance PCB layout traces should be used where possible. Careful consideration must also be given to proper low impedance tracks between power module, input and output grounds. The recommended footprints and soldering profiles are shown in the next two figures

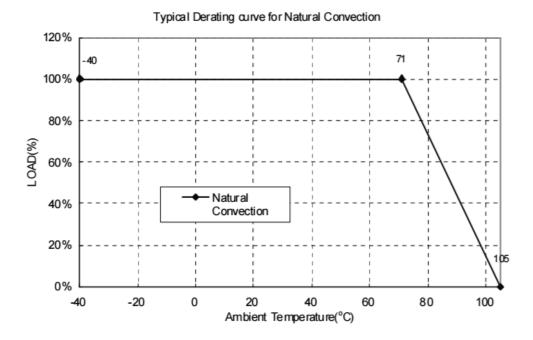
Recommended PCB Layout Footprints

Note that all dimensions are in inches (millimeters)

Lead Free Wave Soldering Profile

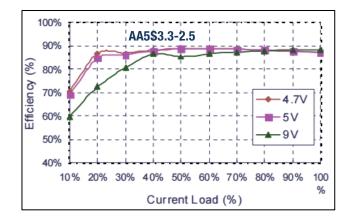
Note:

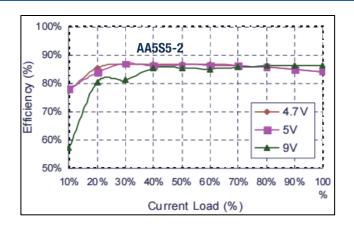
- 1. Soldering Materials: Sn/Cu/Ni
- 2. Ramp up rate during preheat: 1.4 °C/Sec (From 50°C to 100°C)
- 3. Soaking temperature: 0.5 °C/Sec (From 100°C to 130°C), 60±20 seconds
- 4. Peak temperature: 260°C, above 250°C 3~6 Seconds
- 5. Ramp up rate during cooling: -10.0 °C/Sec (From 260°C to 150°C)

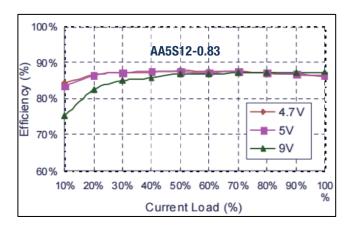

Recommended PCB Layout Footprints and Wave Soldering Profiles

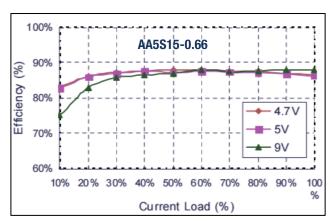
Up to 10 Watt DC-DC Converter

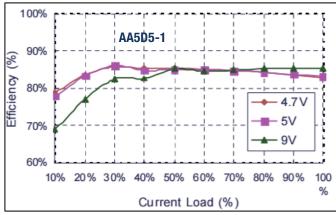
AA Series power de-rating Curves

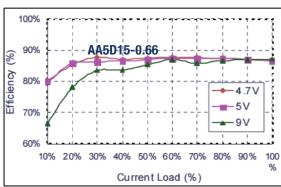

Note that operating ambient temperature range is -40°C to +85°C with derating above 71°C. Also, maximum case temperature under any operating condition should not exceed +105°C.

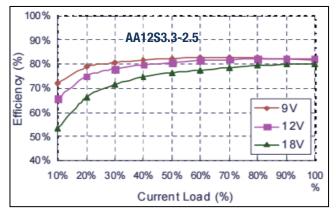


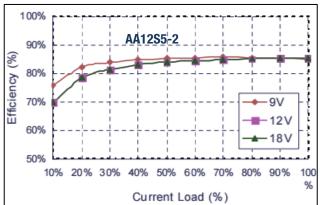

Efficiency vs. Load Curves

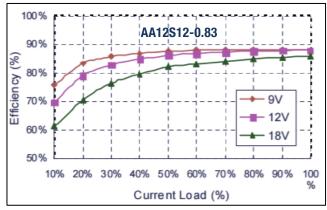


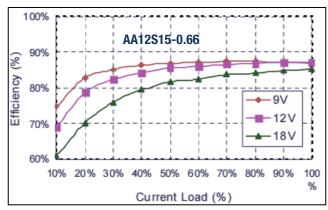

Up to 10 Watt DC-DC Converter

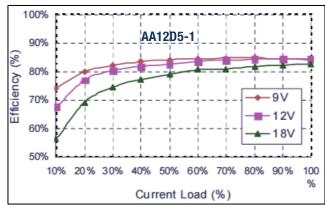


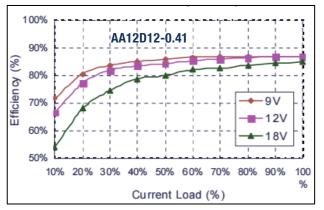


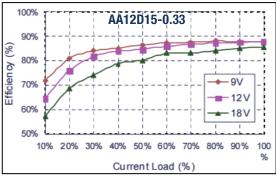


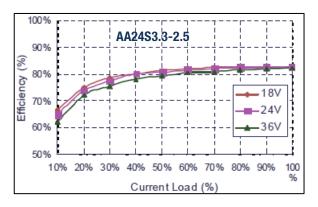


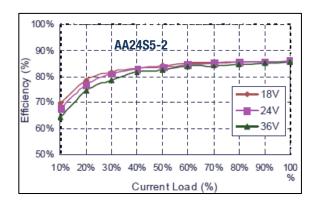


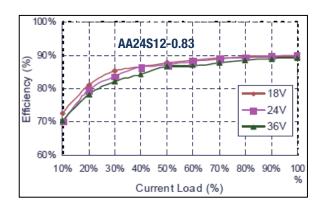

Efficiency vs. Load Curves

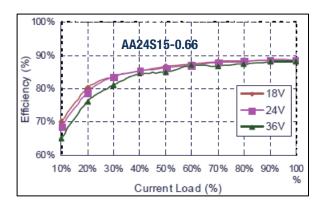


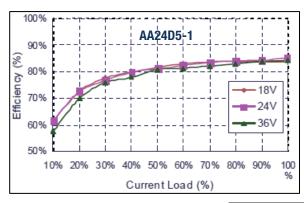


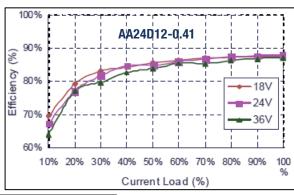


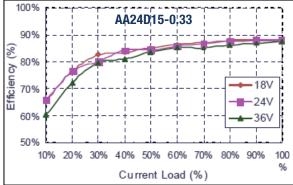


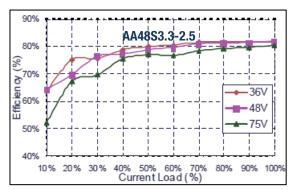


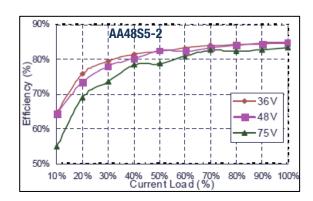

Up to 10 Watt DC-DC Converter

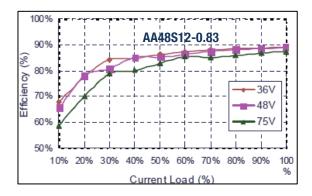

Efficiency vs. Load Curves

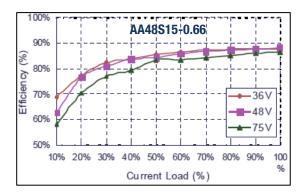


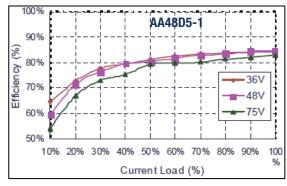


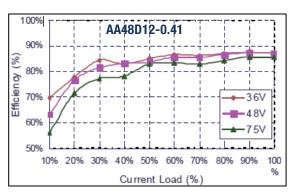


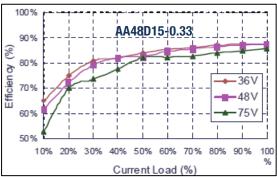


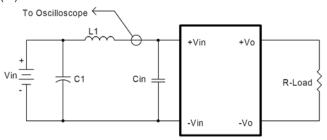



Up to 10 Watt DC-DC Converter


Efficiency vs. Load Curves







Up to 10 Watt DC-DC Converter

Input Capacitance at the Converter

In order to avoid problems with loop stability, the converter must be connected to a low impedance AC source and a low inductance source. The input capacitors (Cin) should be placed close to the converter input pins to de-couple distribution inductance. The external input capacitors should have low ESR in order to quiet any ripple. Circuit as shown in the figure below represents typical measurement methods for reflected ripple current. The capacitor C1 and inductor L1 simulate the typical DC source impedance. The input reflected-ripple current is measured by a current probe oscilloscope with a simulated source Inductance (L1).

I 1: 10nH

C1: None ESR < 0.10hm @100KHz Cin: $22\mu F$ ESR < 0.660hm @100KHz

Input Reflected-Ripple Test Setup

Test Set-Up

The basic test set-up to measure efficiency, load regulation, line regulation and other parameters is shown in the next figure. When testing the converter under any transient conditions, the user should ensure that the transient response of the source is sufficient to power the equipment under test. Below is the calculation of:

- 1- Efficiency
- 2- Load regulation
- 3- Line regulation

The value of efficiency is defined as:

$$\eta = \frac{Vo \times Io}{V_{IN} \times I_{IN}} \times 100\%$$

Where

Vo is output voltage.

Io is output current,

VIN is input voltage,

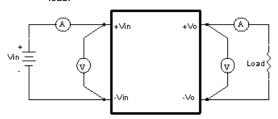
I_{IN} is input current.

The value of load regulation is defined as:

$$Load.reg = \frac{V_{FL} - V_{NL}}{V_{NL}} \times 100\%$$

Where

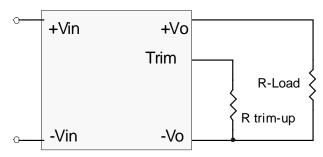
 V_{FL} is the output voltage at full load V_{NL} is the output voltage at 10% load

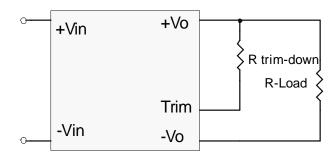

The value of line regulation is defined as:

$$Line.reg = \frac{V_{HL} - V_{LL}}{V_{LL}} \times 100\%$$

Where

 V_{HL} is the output voltage of maximum input voltage at full load.


 V_{LL} is the output voltage of minimum input voltage at full load.


AA Series Test Setup

Output Voltage Adjustment

In order to trim the voltage up or down one needs to connect the trim resistor either between the trim pin and -Vo for trim-up and between trim pin and +Vo for trim-down. The output voltage trim range is $\pm 10\%$. This is shown in the next two figures:

Trim-up Voltage Setup

Trim-down Voltage Setup

Up to 10 Watt DC-DC Converter

1. The value of Rtrim-up defined as:

 $R_{trim-up} = \left(\frac{V_r \times R1 \times (R2 + R3)}{(V_O - V_{O,nom}) \times R2}\right) - Rt \text{ (K}\Omega)$

Where

R $_{\text{trim-up}}$ is the external resistor in Kohm.

 $V_{0, nom}$ is the nominal output voltage.

V₀ is the desired output voltage.

R1, Rt, R2, R3 and \mbox{Vr} are internal to the unit and are defined in the table below

Trim up and Trim down Resistor Values

Model	Output	R1	R2	R3	Rt	Vr
Number	Voltage(V)	(K Ω)	(Κ Ω)	(Κ Ω)	(Κ Ω)	(V)
AA5S3.3-2.5						
AA12S3.3-2.5	3.3	2.74	1.8	0.27	9.1	1.24
AA24S3.3-2.5	ა.ა	2.74	1.0	0.27	9.1	1.24
AA48S3.3-2.5						
AA5S5-2						
AA12S5-2	5.0	2.32	2.32	0	8.2	2.5
AA24S5-2	5.0	2.32	2.32	U	0.2	2.0
AA48S5-2						
AA5S12-0.83						
AA12S12-0.83	12.0	6.8	2.4	2.32	22	2.5
AA24S12-0.83	12.0	0.0	2.4	2.32	22	2.5
AA48S12-0.83						
AA5S15-0.66						
AA12S15-0.66	15.0	8.06	2.4	3.9	27	2.5
AA24S15-0.66	13.0	0.00	2.4	3.9	21	2.0
AA48S15-0.66						

For example, to trim-up the output voltage of 5.0V module (AA24S5-2) by 10% to 5.5V, R trim-up is calculated as follows:

$$V_o - V_{o, \, nom} = 5.5 - 5.0 = 0.5 V$$

 $R1 = 2.32 \text{ K}\Omega$

 $R2 = 2.32 \text{ K}\Omega$

 $R3 = 0 K\Omega$

 $Rt = 8.2 \text{ K}\Omega$,

Vr= 2.5 V

$$R_{trim-up} = (\frac{2.5 \times 2.32 \times (2.32 + 0)}{0.5 \times 2.32}) - 8.2 = 3.4(K\Omega)$$

2. The value of R trim-down defined as:

$$R_{trim-down} = R1 \times (\frac{Vr \times R1}{(V_{o,nom} - V_{o}) \times R2} - 1) - Rt \text{ (K}\Omega)$$

Where

R $_{\text{trim-down}}$ is the external resistor in Kohm.

 $V_{0, nom}$ is the nominal output voltage.

V₀ is the desired output voltage.

R1, Rt, R2, R3 and Vr are internal to the unit and are defined in the table above.

For example, to trim-down the output voltage of 5.0V module (AA22S5-2) by 10% to 4.5V, R trim-down is calculated as follows:

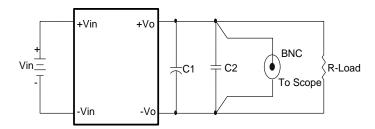
$$V_{0,nom} - V_0 = 5.0 - 4.5 = 0.5V$$

 $R1 = 2.32 \text{ K}\Omega$

 $R2 = 2.32 \text{ K}\Omega$

 $R3 = 0 K\Omega$

 $Rt=8.2\;K\Omega$


Vr = 2.5 V

$$R_{trim-down} = 2.32 \times (\frac{(2.5 \times 2.32)}{0.5 \times 2.32} - 1) - 8.2 = 1.08 \text{ (K}\Omega)$$

Noise Measurement and Output Ripple

The test set-up for noise and ripple measurements is shown in the figure below. A coaxial cable was used to prevent impedance mismatch reflections disturbing the noise readings at higher frequencies. Measurements are taken with the output appropriately loaded and all ripple/noise specifications are from D.C. to 20MHz Bandwidth.

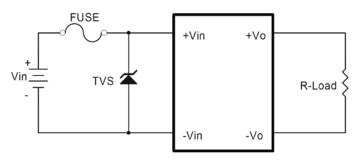
.

Note: C1: 10µF tantalum capacitor C2: 1µF ceramic capacitor

Output Voltage Ripple and Noise Measurement Set-Up

Output Capacitance

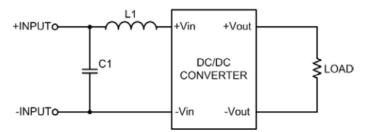
The AA series converters provide unconditional stability with or without external capacitors. For good transient response, low ESR output capacitors should be located closer to the point of load.



Up to 10 Watt DC-DC Converter

SAFETY and EMC

Input Fusing and Safety Considerations

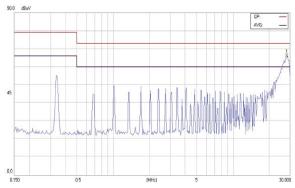

The AA series of converters do not have an internal fuse. However, to achieve maximum safety and system protection, always use an input line fuse. We recommended a time delay fuse 6A for 24Vin models and 3A for 48Vin modules. The circuit in the figure below is recommended by a Transient Voltage Suppressor diode across the input terminal to protect the unit against surge or spike voltage and input reverse voltage.

Input Protection Circuit

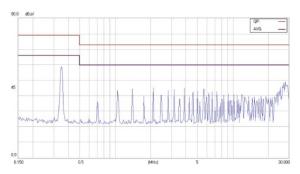
EMC Considerations

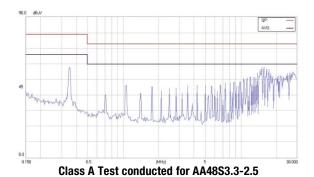
EMI Test standard: EN55022 Class A and Class B Conducted Emission Test Condition: Input Voltage: Nominal, Output Load: Full Load

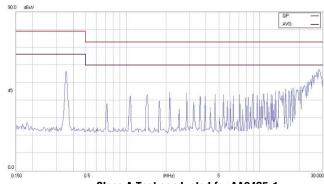
Connection circuit for conducted EMI testing

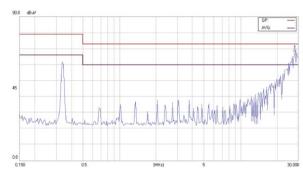

EN55022 class A			EN55022 class B				
Model No.	C1	L1	Model No.	C1	L1		
AA24S3.3-2.5	NC	Short	AA24S3.3-2.5	1μF /100V 1812	3.9µH		
AA24S5-2	NC	Short	AA24S5-2	1μF /100V 1812	3.9µH		
AA2412-0.83	NC	Short	AA2412-0.83	1μF /100V 1812	3.9µH		
AA24S15-0.66	NC	Short	AA24S15-0.66	1μF /100V 1812	3.9µH		
AA24D5-1	NC	Short	AA24D5-1	1μF /100V 1812	3.9µH		
AA24D12-0.41	NC	Short	AA24D12-0.41	1μF /100V 1812	3.9µH		
AA24D15-0.33	NC	Short	AA24D15-0.33	1μF /100V 1812	3.9µH		
AA48S3.3-2.5	NC	Short	AA48S3.3-2.5	1μF /100V 1812	3.9µH		
AA48S5-2	NC	Short	AA48S5-2	1μF /100V 1812	3.9µH		
AA48S12-0.83	NC	Short	AA48S12-0.83	1μF /100V 1812	3.9µH		
AA48S15-0.66	NC	Short	AA45S15-0.66	1μF /100V 1812	3.9µH		
AA48D5-1	NC	Short	AA48D5-1	1μF /100V 1812	3.9µH		
AA48D12-0.41	NC	Short	AA48D12-0.41	1μF /100V 1812	3.9µH		
AA48D15-0.33	NC	Short	AA48D15-0.33	1μF /100V 1812	3.9µH		

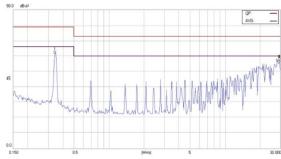
Note: All of capacitors are ceramic capacitors.

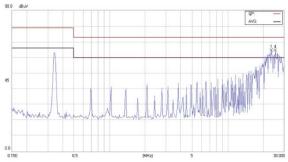

EMI and conducted noise meet EN55022 Class A


AA SERIES (1 x 1 Package) Up to 10 Watt DC-DC Converter


Class A Test conducted for AA24S3.3-2.5


Class A Test conducted for AA24S12-0.83

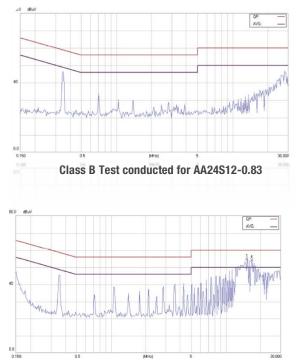

Class A Test conducted for AA48S12-0.83


Class A Test conducted for AA24S5-1

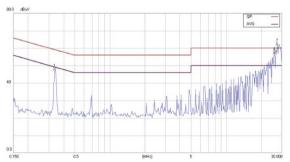
Class A Test conducted for AA24S15-0.66

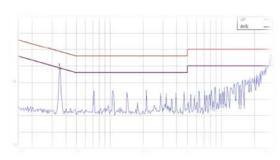
Class A Test conducted for AA48D5-2

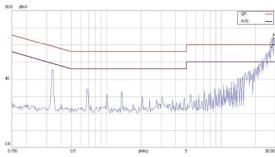
Class A Test conducted for AA48S15-0.66

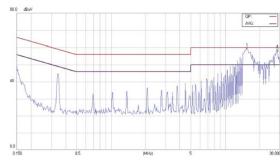


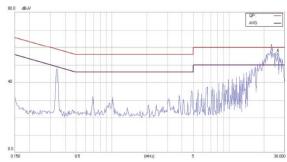
Up to 10 Watt DC-DC Converter


EMI and conducted noise meet EN55022 Class B


Class B Test conducted for AA24S3.3-2.5

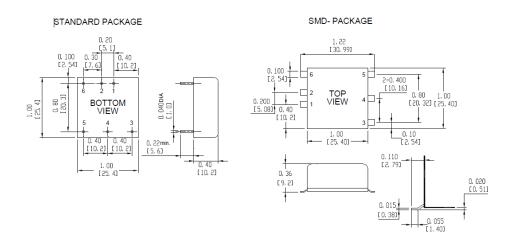

Class B Test conducted for AA48S3.3-2.5


Class B Test conducted for AA484S12-0.83


Class B Test conducted for AA24S5-2

Class B Test conducted for AA24S15-0.66

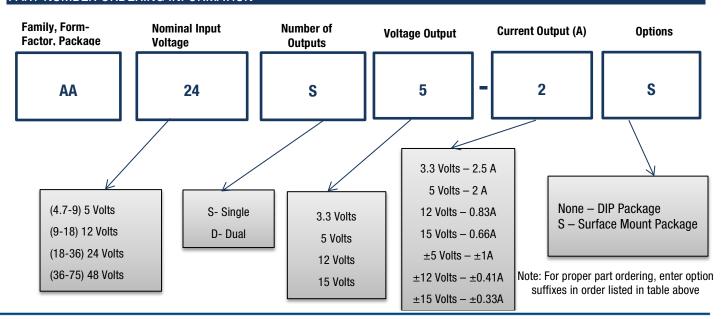
Class B Test conducted for AA48S5-2



Class B Test conducted for AA48S15-0.66

Up to 10 Watt DC-DC Converter

MECHANICAL SPECIFICATIONS



Note: All dimensions are in inches (millimiters). Tolerance: x.xx ±0.02 in. (0.5mm), x.xxx ±0.010 in. (0.25 mm) unless otherwise noted

PIN CONNECTIONS

PIN CONNECTION							
PIN	PIN SINGLE DUAL						
1	+ V Input	+ V Input					
2	- V Input	- V Input					
3	+ V Output	+ V Output					
4	Trim	Common					
5	- V Output	- V Output					
6	Remote	Remote					

PART NUMBER ORDERING INFORMATION

DATEL is a registered Trademark of DATEL, Inc. 120 Forbes Boulevard, Suite 125, Mansfield, MA 02048 USA ITAR and ISO 9001/2015 REGISTERED DATEL, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.