

Up to 20 Watt DC-DC Converter

FEATURES

- Industry standard footprint (2 inch X 1.6 inch)
- Regulated Outputs, Fixed Switching Frequency
- Up to 84 % Efficiency
- 4:1 Input Range
- Up to 20 Watts of Power
- -25°C to +71°C temperature range
- Remote On/Off logic control
- Metal shielding case (six-sided)
- Continuous Short Circuit Protection

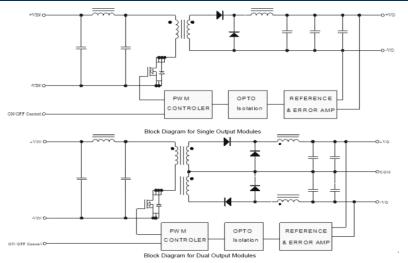
PRODUCT OVERVIEW

The AS series offer up to 20 watts of output power in standard 2.00 x 1.60 x 0.45 inches packages. This series features high efficiency and 1500 Volts of DC isolation. The AS series provides a 4:1 wide input voltage range of 9 to 36 or 18 to 72VDC, and delivers precise regulated output. These modules operate over the ambient operating temperature range of -25° C to $+71^{\circ}$ C. All devices offer output over-current and short circuit protection. In addition, the standard control functions of this series include Remote On/Off and adjustable output voltage.

APPLICATIONS:

- Distributed Power Architectures
- Mobile telecommunication
- Industrial applications
- Battery operated equipment

AVAILABLE OPTIONS


- Customizable output voltages
- CE Mark 2004/108/EC certification
- UL60950-1, EN60950-1, and IEC60950-1 safety

Contact DATEL for other series in 2.00" x 1.60" footprint

Cost Savings, Higher Power, Other Voltage outputs, Higher Efficiency, etc.

MODEL NUMBER	INPUT VOLTAGE	OUTPUT VOLTAGE	OUTPUT CURRENT MAX	EFFICIENCY %	LOAD REGULATION	LINE REGULATION
AS22S3.3-4	9-36 VDC	3.3VDC	4 A	78	± 0.5 %	± 0.5 %
AS22S5-4	9-36 VDC	5.0 VDC	4 A	81	± 0.5 %	± 0.5 %
AS22S12-1.67	9-36 VDC	12 VDC	1.67 A	83	± 0.5 %	± 0.5 %
AS22S15-1.33	9-36 VDC	15 VDC	1.33 A	83	± 0.5 %	± 0.5 %
AS22D5-2	9-36 VDC	±5 VDC	±2 A	83	± 0.5 %	± 0.5 %
AS22D12-0.83	9-36 VDC	±12 VDC	±0.833 A	83	± 0.5 %	± 0.5 %
AS22D15-0.66	9-36 VDC	±15 VDC	±0.666 A	83	± 0.5 %	± 0.5 %
AS45S3.3-4	18-72VDC	3.3 VDC	4 A	78	± 0.5 %	± 0.5 %
AS45S5-4	18-72VDC	5 VDC	4 A	82	± 0.5 %	± 0.5 %
AS45S12-1.67	18-72VDC	12 VDC	1.67 A	84	± 0.5 %	± 0.5 %
AS45S15-1.33	18-72VDC	15 VDC	1.33 A	84	± 0.5 %	± 0.5 %
AS45D5-2	18-72VDC	±5 VDC	±2 A	84	± 0.5 %	± 0.5 %
AS45D12-1.25	18-72VDC	±12 VDC	±0.833 A	84	± 0.5 %	± 0.5 %
AS45D15-0.66	18-72VDC	±15 VDC	±0.666 A	84	± 0.5 %	± 0.5 %

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameters	Conditions	Model	Min.	Typical	Max.	Units
Input Voltage						
Continuous	DC	24Vin	-0.3		36	Volts
		48V _{in}	-0.3		72	VUILS
Transient	100ms, DC	24Vin			50	Volts
Transient		48Vin			100	
Operating Ambient Temperature	Derating, Above 60°C	All	-40		+71	°C
Case Temperature		All			+100	°C
Storage Temperature		All	-55		+105	°C
Input / Output Isolation Voltage	1 minute	All	1500			Volts

INPUT CHARACTERISTICS

Note: All specifications are typical at nominal input, full load at 25°C unless otherwise noted

Parameters	Conditions	Model	Min.	Typical	Max.	Units
Operating Input Voltage		24Vin	9	24	36	Volts
operating input voltage		48Vin	18	48	72	VUILS
Maximum Input Current	100% Load, V _{in} =9V	24Vin		2780		mA
	100% Load, V _{in} =18V	48Vin		1390		IIIA
		AS22S3.3-4		15		
		AS22S5-4		15		
		AS22S12-1.67		15		
		AS22S15-1.33		15		
		A22D5-2		20		
	V _{in} =Nominal input	AS22D12-0.83		20		
No-Load Input Current		AS22D15-0.66		20		mA
	v _{in} =Noninal input	AS45S3.3-4		10		IIIA
		AS45S5-4		10		
		AS45S12-1.67		10		
		AS45S15-1.33		10		
		AS22D5-2		15		
		AS45D12-1.25		15		
		AS45D15-1		15		
Off Converter Input Current	Shutdown input idle current	All		4	10	mA
Inrush Current (I ² t)	As per ETS300 132-2	All			TBD	A ² s
Input Reflected-Ripple Current	P-P thru 12uH inductor, 5Hz to 20MHz	All			TBD	mA

Up to 20 Watt DC-DC Converter

OUTPUT CHARACTERISTIC

Parameters	Conditions	Model	Min.	Typical	Max.	Units
		Vo=3.3	3.267	3.3	3.333	
		Vo=5.0	4.95	5	5.05	
		Vo=12	11.89	12	12.12	
Output Voltage Set Point	$V_{in} = Nominal V_{in}$, $I_0 = I_{o_max}$, $Tc = 25^{\circ}C$	Vo=15	14.85	15	15.15	Volts
		Vo=±5	4.9	5	5.05	
		Vo=±12	11.76	12	12.12	
		Vo=±15	14.7	15	15.15	
Output Voltage Balance	V_{in} =nominal, lo= I_{o_max} , Tc=25°C	Dual			±1.0	%
Output Voltage Regulation						
Line Regulation	V _{in} =High line to Low line Full Load	Single			±0.5	%
		Dual			±1.0	%
Load Regulation	I₀ = Full Load to min. Load	Single			±0.5	%
-		Dual			±1.0	%
Temperature Coefficient	TC=-40°C to 80°C				±0.02	%/°C
Output Voltage Ripple and Noise	5Hz to 20MHz bandwidth				-	
		Vo=3.3V			75	
	Full Load, 20MHz bandwidth 10uF tantalum and	Vo=5V			75	
		Vo=15V				
Peak-to-Peak	1uF ceramic capacitor	Vo=12V				mV
		Vo=±5V			75	
		$V_{0=\pm 15V}$ $V_{0=\pm 12V}$				
		$V0=\pm 12V$ V0=3.3V	0		4000	
		$V_{0=3.3V}$ V_{0=5V}	0		4000	
		V0=3V V0=12V	0		1670	
Operating Output Current Range		V0=12V V0=15V	0		1330	mA
operating output ourrent hange		$V_0=15V$ $V_0=\pm5V$	0		±2000	шл
		V0=±0V V0=±12V	0		±833	
		V0=±12V V0=±15V	0		±666	
Output DC Current-Limit Inception	Output Voltage=90% Vo, nominal	All	120			%
		Vo=3.3V	-		4000	
		V0=0.0V			4000	
		Vo=12V			1670	
Maximum Output Capacitance	Full load, Resistance	Vo=15V			1330	μF
		Vo=±5V			2000	•
		Vo=±12V			833	
		$V_{0=\pm 15V}$			666	

DYNAMIC CHARACTERISTICS

Parameters	Conditions	Model	Min.	Typical	Max.	Units	
Output Voltage Current Transient							
Step Change in Output Current	75% to 100% of I _{o_max}	All			±5	%	
Setting Time (within 1% Vonominal)	di/dt=0.1A/us	All			500	μs	
	Turn-On Delay and Rise Time						
Turn-On Delay Time, From Input	V _{in min} to 10%V _{o set}	Vin=24V		180		ms	
		Vin=48V		140			
Output Voltage Rise Time	10% V _{o_set} to 90% V _{o_set}	Vin=24V		90		ms	
Output Voltage filse fillie	1070 V _{0_set} 10 9070 V _{0_set}	Vin=48V		10		1115	

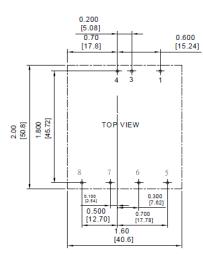
Up to 20 Watt DC-DC Converter

FEATURE CHARACTERISTICS

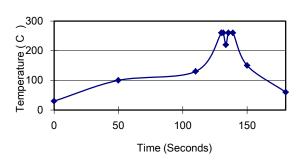
Parameters	Conditions	Model	Min.	Typical	Max.	Units
		AS22S3.3-4		78		
		AS22S5-4		81		
		AS22S12-1.67		83		
	$V_{in} = 24 \text{ Vdc}, I_o = I_{o_max}, \text{Tc} = 25^{\circ}\text{C}$	AS22S15-1.33		83		%
		AS22D5-2		83		
		AS22D12-0.83		83		
		AS22D15-0.66		83		
Efficiency 100% Load		AS45S3.3-4		78		
		AS45S5-4		82		
		AS45S12-1.67		84		
	$V_{in} = 48 \text{ Vdc}, I_o = I_{o_max}, Tc = 25^{\circ}C$	AS45S15-1.33		84		%
		AS45D5-2		84		
		AS45D12-0.83		84		
		AS45D15-0.666		84		
ISOLATION CHARACTERISTICS		•				•
Input to Output	1 minutes	All	1500			Volts
Isolation Resistance		All	100			MΩ
Isolation Capacitance		All		1000		pF
Switching Frequency		Vin=24V		300		KHz
Switching Frequency		Vin=48		300		IXI12
On/Off Control, Positive Remote On/Off	logic					
			3.5 or			
Logic High (Module On)	Von/off at Ion/off=0.1uA	All	Open		72	Volts
			Circui		12	VOILS
			t			
Logic Low (Module Off)	Von/off at Ion/off=1.0mA	All			1.8	Volts
Logic Low (Module On)	Von/off at Ion/off=0.1uA	All			1.2	Volts
Output Voltage Trim range	At rated Power	All	-10		+10	%
MTBF	I _o =100%of I _{o_max} ;Ta=25°C per MIL-HDBK-217F	All		1500		M hours
Weight		All		53		grams

Operating Temperature Range

The AS series of converters operates over the wide temperature of -25°C to +71°C. Derating starts above +60°C. The module operate normally up to +100°C case temperature.


Output Voltage Adjustment

The output voltage on all models is adjustable within the range of -10% to +10%.

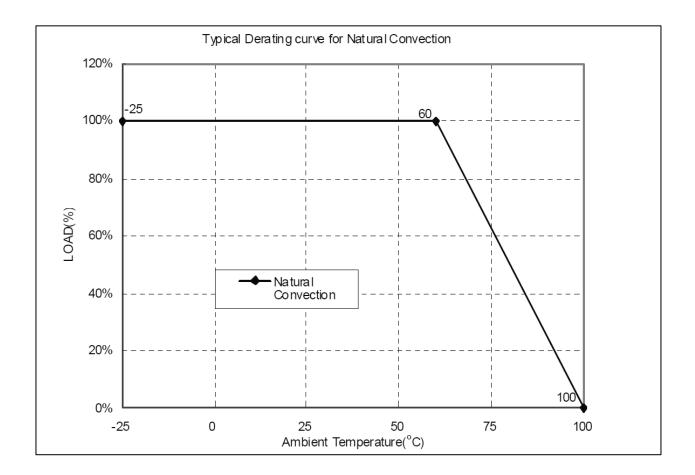

Recommended Layout PCB Footprints and Soldering Information

The end user of the converter must ensure that other components and metal in the vicinity of the converter meet the spacing requirements to which the system is approved. Low resistance and low inductance PCB layout traces should be used where possible. Careful consideration must also be given to proper low impedance tracks between power module, input and output grounds. The recommended footprints and soldering profiles are shown in the next two figures

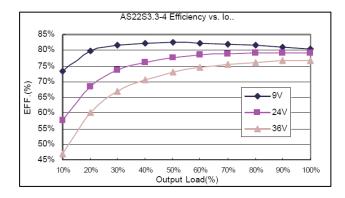
1.3mm PLATED THROUGH HOLE 2.0mm PAD SIZE

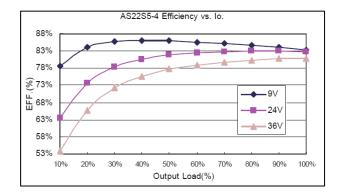
Recommended PCB Layout Footprints, Dimensions are in inches (millimeters)

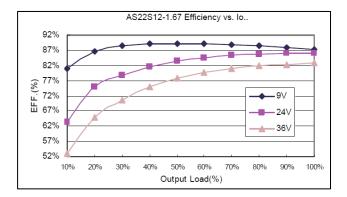
Lead Free Wave Soldering Profile

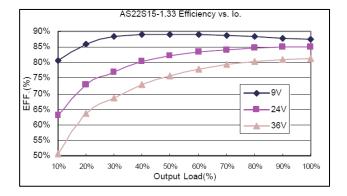

Note :

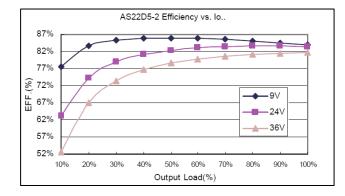
- 1. Soldering Materials: Sn/Cu/Ni
- 2. Ramp up rate during preheat: 1.4 °C/Sec (From 50°C to 100°C)
- 3. Soaking temperature: 0.5 °C/Sec (From 100°C to 130°C), 60±20 seconds
- 4. Peak temperature: 260°C, above 250°C 3~6 Seconds
- 5. Ramp up rate during cooling: -10.0 °C/Sec (From 260°C to 150°C)

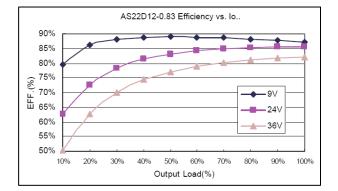

AS Series power de-rating Curves

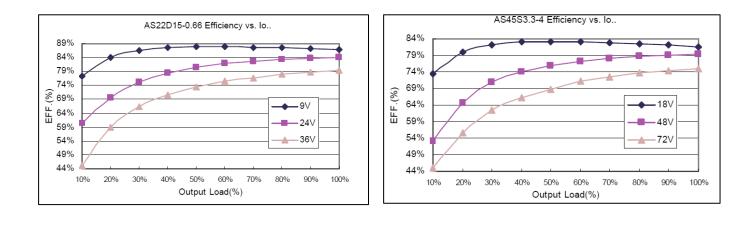

Note that the converter operating ambient temperature range is -25° C to $+71^{\circ}$ C with derating above $+60^{\circ}$ C. Also, maximum case temperature under any operating condition should not exceed $+100^{\circ}$ C.

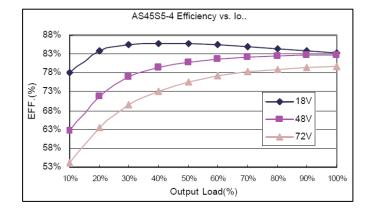


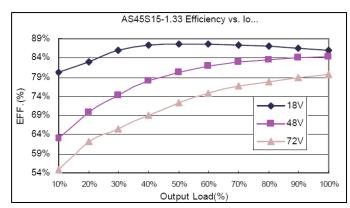


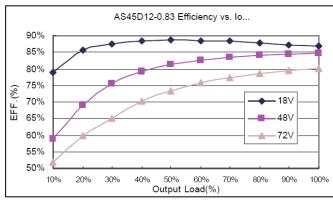

Efficiency vs. Load Curves

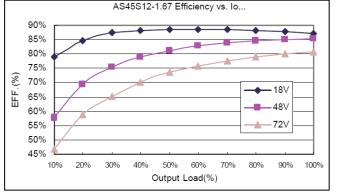


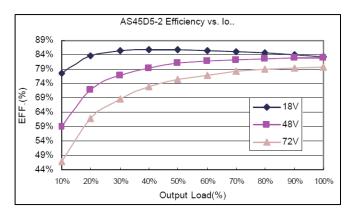


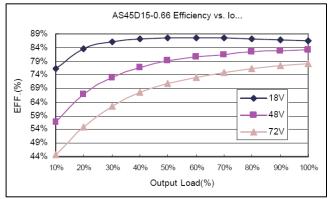


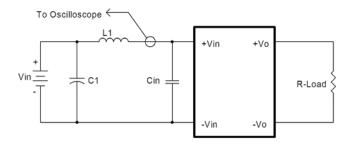

DATEL, Inc. 120 Forbes Boulevard, Suite 125, Mansfield MA 02048 USA • Tel (508)964-5131 • www.datel.com • e-mail:help@datel.com




Up to 20 Watt DC-DC Converter







DATEL, Inc. 120 Forbes Boulevard, Suite 125, Mansfield MA 02048 USA • Tel (508)964-5131 • www.datel.com • e-mail:help@datel.com

Input Capacitance at the Converter

In order to avoid problems with loop stability, the converter must be connected to a low impedance AC source and a low inductance source. The input capacitors (Cin) should be placed close to the converter input pins to de-couple distribution inductance. The external input capacitors should have low ESR in order to quiet any ripple. Circuit as shown in the figure below represents typical measurement methods for reflected ripple current. The capacitor C1 and inductor L1 simulate the typical DC source impedance. The input reflected-ripple current is measured by a current probe oscilloscope with a simulated source Inductance (L1).

L1: 12uH C1: 220uF ESR < 0.1ohm @100KHz Cin: 33µF ESR < 0.7ohm @100KHz

Input Reflected-Ripple Test Setup

Test Set-Up

The basic test set-up to measure efficiency, load regulation, line regulation and other parameters is shown in the next figure. When testing the converter under any transient conditions, the user should ensure that the transient response of the source is sufficient to power the equipment under test. Below is the calculation of :

- 1- Efficiency
- 2- Load regulation
- 3- Line regulation

The value of efficiency is defined as:

$$\eta = \frac{Vo \times Io}{V_{IN} \times I_{IN}} \times 100\%$$

Where

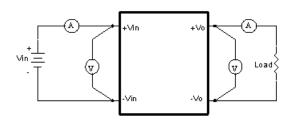
 V_0 is output voltage, I_0 is output current, V_{IN} is input voltage,

IIN is input current.

The value of load regulation is defined as:

$$Load.reg = \frac{V_{FL} - V_{NL}}{V_{NL}} \times 100\%$$

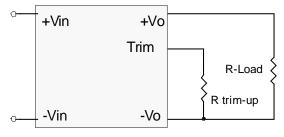
Where

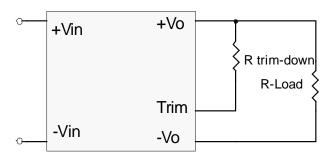

 V_{FL} is the output voltage at full load V_{NL} is the output voltage at 10% load

The value of line regulation is defined as:

$$Line.reg = \frac{V_{HL} - V_{LL}}{V_{LL}} \times 100\%$$

Where


- V_{HL} is the output voltage of the maximum input voltage at full load.
- V_{LL} is the output voltage of the minimum input voltage at full load.



Output Voltage Adjustment

In order to trim the voltage up or down, the user needs to connect the trim resistor either between the trim pin and -Vo for trim-up and between trim pin and +Vo for trim-down. The output voltage trim range is $\pm 10\%$. This is shown in the next two figures:

Trim-down Voltage Setup

Up to 20 Watt DC-DC Converter

1. The value of Rtrim-up is defined as:

$$R_{trim - up} = \frac{(R1 - R2 \times (Vo - V_{o, nom}))}{(Vo - V_{o, nom})}$$
(K Ω)

Where

R $_{\mbox{trim-up}}$ is the external resistor in Kohm.

 $V_{0, nom}$ is the nominal output voltage.

V₀ is the desired output voltage.

R1and R2 are internal to the unit and are defined in the table below Trim up Resistor Values

Model	Output	R1	R2
Number	Voltage(V)	(ΚΩ)	(ΚΩ)
AS22S3.3-4	3.3	3.484	7.511
AS45S3.3-4			
AS22S5-4	5.0	5,788	8.25
AS45S5-4	0.0	0.100	0.20
AS22S12-1.67	12.0	19.763	14.366
AS45S12-1.67	12.0	15.700	14.000
AS22S15-1.33	15.0	25.585	14.516
AS45S15-1.33	10.0	20.000	1 1.010
AS22D5-2 AS45D5-2	±5V	20.657	19.5
AS22D12-0.83 AS45D12-0.83	±12V	42.141	13.793
AS22D15-0.66 AS45D15-0.66	±15V	56.644	17.647

For example, to trim-up the output voltage of the 5.0 Votls module (AS22S5-4) by 8% to 5.4V, R trim-up is calculated as follows:

 $V_{o} - V_{o, nom} = 5.4 - 5.0 = 0.4V$ R1 = 5.788 KΩ R2 = 8.25 KΩ $R_{prim - up} = \frac{5.788 - 8.25 \times 0.4}{0.4} = 6.22$ (KΩ)

2. The value of R trim-down defined as:

$$R_{nim-down} = \frac{(R1 - R2 \times (V_{o, nom} - V_{o}))}{(V_{o, nom} - V_{o})} (K\Omega)$$

Where

Rtrim-down is the external resistor in Kohm.

VO, nom is the nominal output voltage.

VO is the desired output voltage.

R1, R2, are internal to the unit and are defined in the table below.

Model	Output	R1	R2
Number	Voltage(V)	(ΚΩ)	(ΚΩ)
AS22S3.3-4 AS45S3.3-4	3.3	6.18	12.1
AS22S5-4 AS45S5-4	5.0	5.788	10.57
AS22S12-1.67 AS45S12-1.67	12.0	86.496	60.1
AS22S15-1.33 AS45S15-1.33	15.0	150	87
AS22D5-2 AS45D5-2	±5V	68.296	48.1
AS22D12-0.83 AS45D12-0.83	±12V	430	120
AS22D15-0.66 AS45D15-0.66	±15V	743	177

For example, to trim-down the output voltage of 5.0V module (AS22S5-6) by 8% to 4.6V, R trim-down is calculated as follows:

 $V_{0,nom} - Vo = 5.0 - 4.6 = 0.4V$

R1 = 5.788 KΩ
R2 = 10.57 KΩ
$$R_{trim-down} = \frac{5.788 - 10.57 \times 0.4}{0.4} = 3.9$$
 (KΩ)

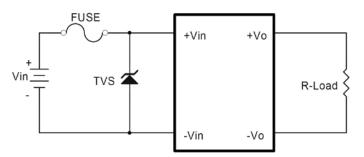
Noise Measurement and Output Ripple

The test set-up for noise and ripple measurements is shown in the figure below. A coaxial cable was used to prevent impedance mismatch reflections disturbing the noise readings at higher frequencies. Measurements are taken with the output appropriately loaded and all ripple/noise specifications are from 5Hz to 20MHz Bandwidth.

Output Voltage Ripple and Noise Measurement Set-Up

Note: C1: None C2: 0.1µF ceramic capacitor

Output Capacitance


This series of converters provides unconditional stability with or without external capacitors. For good transient response, low ESR output capacitors should be located close to the point of load.

SAFETY and EMC

Input Fusing and Safety Considerations

This AS series of converters does not have an internal fuse. However, to achieve maximum safety and system protection, always use an input line fuse. DATEL recommended a time delay fuse of 4A for 24Vin models and 2A for 48Vin modules. The circuit in the figure below is recommended by a Transient Voltage Suppressor diode across the input terminal to protect the unit against surge or spike voltage and input reverse voltage.

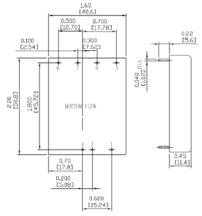


Input Protection Circuit

EMC Considerations

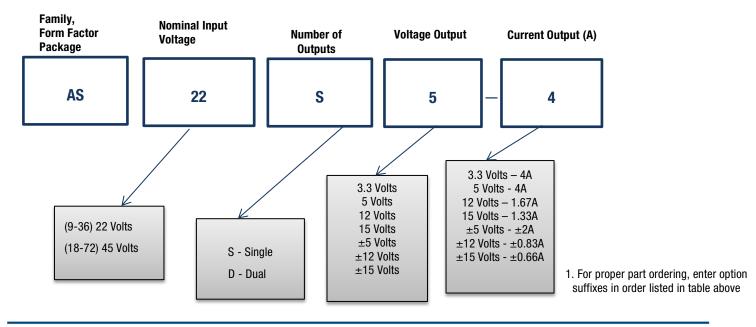
EMI Test standard: EN55022 Class B Conducted Emission Test Condition: Nominal Input, Full Load at 25°C

POWER SUPPLY


Connection circuit for conducted EMI testing

EN55022 class A							
Model No.	C1	L1	C2	Model No.	C1	Ľ	C2
AS22S3.3-4	47µF/50V	1.25µH	47µF/50V	AS45S3.3-4	22µF/100V	3.5µH	22µF/100V
AS45S5-4	47µF/50V	1.25µH	47µF/50V	AS45S5-4	22µF/100V	3.5µH	22µF/100V
AS45S12-1.67	47µF/50V	1.25µH	47µF/50V	AS45S12-1.67	22µF/100V	3.5µH	22µF/100V
AS45S15-1.33	47µF/50V	1.25µH	47µF/50V	AS45S15-1.33	22µF/100V	3.5µH	22µF/100V
AS45D5-2	47µF/50V	1.25µH	47µF/50V	AS45D5-2	22µF/100V	3.5µH	22µF/100V
AS45D12-0.83	47µF/50V	1.25µH	47µF/50V	AS45D12-0.83	22µF/100V	3.5µH	22µF/100V
AS45D15-0.66	47µF/50V	1.25µH	47µF/50V	AS45D15-0.66	22µF/100V	3.5µH	22µF/100V

Note: All of capacitors are KY aluminum capacitors. CY is a No Connection.


MECHANICAL DIMENSIONS Inches (mm)

Note: All dimensions are in inches (millimeters). Tolerance: x.xx ±0.04 in. (0.5mm), x.xxx ±0.010 in. (0.25 mm) unless otherwise noted **PIN CONNECTIONS**

Pin Connections						
PIN	SINGLE OUTPUT	DUAL OUTPUT				
1	On/Off Control	On/Off Control				
3	- V Input	- V Input				
4	+ V Input	+ V Input				
5	Trim	Trim				
6	- V Output	- V Output				
7	+ V Output	Common				
6	No Pin	+ V Output				

PART NUMBER AND ORDERING INFORMATION

DATEL is a registered Trademark of DATEL, Inc. 120 Forbes Boulevard, Suite 125, Mansfield, MA 02048 USA ITAR and ISO 9001/2015 REGISTERED DATEL, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.