

1 Watt Isolated DC-DC Converter

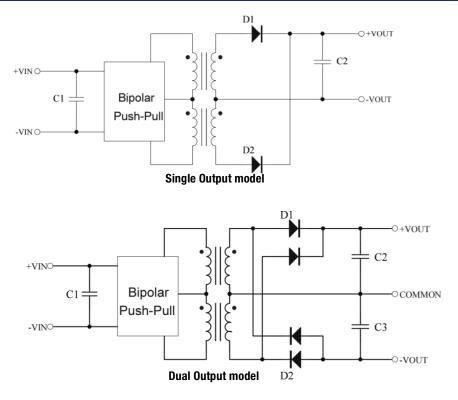
FEATURES

- Industry Standard SIP or SMD Package
- 1 Watts of Output power
- 1500 Volts DC of isolation
- 10% input voltage ranges (5, 12, 24 Volts)
- Unregulated Outputs
- Up to 83 % Efficiency
- -40°C to +85°C temperature range
- No Tantalum Capacitor is needed
- Low Noise and Ripple
- Low cost
- Designed to meet CE and UL/CSA60950

PRODUCT OVERVIEW

The PT/PS series offer 1 watts of isolated output power in an 8 pin SIP standard package or SMD package. These converters have input ranges of 5, 12, and 24 volts with a 10% tolerance. They provide precise unregulated output voltage ranging from 3.3 to 15 volts. The output voltage can be single or dual depending on the model. Other output voltages are also available and please contact DATEL if your application requires such modification.

This series features high efficiency up to 83%; 1500Volts of DC of isolation and can operate over the ambient temperature range of -40° C to $+85^{\circ}$ C. These modules offer low noise and ripple.


APPLICATIONS:

- Distributed Power Architectures
- Mobile telecommunication
- Industrial applications
- Battery and portable operated equipment

AVAILABLE OPTIONS

- SIP for all models
- SMD package for 5 and 12 volts input models
- UL/CSA60950-1, TUV per IEC/ EN60950-1, 2nd Edition

BLOCK DIAGRAM

MODEL SELECTIONS

MODEL NUMBER	INPUT Voltage	OUTPUT VOLTAGE	OUTPUT CURRENT MAX	EFFICIENCY %	INPUT CURRENT MINIMUM	INPUT CURRENT MAXIMUM
PT5S5-0.2 or PS5S5-0.2	4.5 - 5.5V	5.0 VDC	200 mA	79	40 mA	253 mA
PT5S12-0.08 or PS5S12-0.08	4.5 - 5.5V	12 VDC	84 mA	79	40 mA	255 mA
PT5S15-0.06 or PS5S15-0.06	4.5 - 5.5V	15 VDC	67 mA	79	40 mA	254 mA
PT5D9-0.05 or PS5D9-0.05	4.5 - 5.5V	±9.0 VDC	55 mA	78	40 mA	258 mA
PT5D12-0.04 or PS5D12-0.04	4.5 - 5.5V	±12 VDC	±42 mA	78	40 mA	258 mA
PT5D15-0.03 or PS5D15-0.03	4.5 - 5.5V	±15 VDC	±33 mA	78	40 mA	258 mA
PT5D5-0.1 or PS5D5-0.1	4.5 - 5.5V	±5.0 VDC	±100 mA	74	40 mA	270 mA
PT12S5-0.2 or PS12S5-0.2	10.8 – 13.2	5.0 VDC	200 mA	80	15 mA	104 mA
PT12S12-0.08 or PS12S12-0.08	10.8 – 13.2	12 VDC	84 mA	81	15 mA	104 mA
PT12S15-0.06 or PS12S15-0.06	10.8 – 13.2	15 VDC	67 mA	81	15 mA	103 mA
PT12D12-0.04 or PS12D12-0.04	10.8 – 13.2	±12 VDC	±42 mA	80	15 mA	105 mA
PT12D15-0.03 or PS12D15-0.03	10.8 – 13.2	±15 VDC	±33 mA	81	15 mA	102 mA
PT12D5-0.1 or PS12D5-0.1	10.8 – 13.2	±5 VDC	±100 mA	77	15 mA	108 mA
PT24S5-0.2	21.6 - 26.4V	5.0 VDC	200 mA	80	7 mA	52 mA
PT24S12-0.08	21.6 - 26.4V	12 VDC	84 mA	83	7 mA	51 mA
PT24S15-0.06	21.6 - 26.4V	15 VDC	67 mA	81	7 mA	52 mA
PT24D12-0.04	21.6 - 26.4V	±12 VDC	±42 mA	81	7 mA	52 mA
PT24D15-0.03	21.6 - 26.4V	±15 VDC	±33 mA	82	7 mA	50 mA
PT24D5-0.1	21.6 - 26.4V	±5 VDC	±100 mA	79	7 mA	53 mA

ABSOLUTE MAXIMUM RATINGS

PARAMETER	CONDITIONS	MODEL	Min.	Typical	Max.	Units
Input Voltage						
o	20	5Vin	-0.7		5.5	
Continuous	DC	12V _{in} 24V _{in}	-0.7 -0.7		13.2 26.4	Volts
Transient	100ms, DC	5Vin 12Vin 24V _{in}			9 18 30	Volts
Operating Ambient Temperature	Derating, Above 70°C	All	-40		+85	°C
Case Temperature		All	-40		+100	°C
Storage Temperature		All	-55		+125	°C
Input / Output Isolation Voltage	1 minute	All	1500			Volts

INPUT CHARACTERISTICS

Note: All specifications are typical at nominal input, full load at 25°C unless otherwise noted

PARAMETER	CONDITIONS	MODEL	Min.	Typical	Max.	Units	
		5Vin	4.5	5	5.5		
Operating Input Voltage		12Vin	10.8	12	13.2	Volts	
		24Vin	21.6	24	26.4		
Maximum Input Current	Full Load, Vin =4.5V	5Vin			250		
	Full Load, Vin = 10.8V	12Vin			110	mA	
	Full Load, Vin =21.6V	24Vin			50		
		5Vin		40		mA	
No-Load Input Current	Vin =Nominal input	12Vin		15		mA	
·		24Vin		7		mA	
Inrush Current (l ² t)	As per ETS300 132-2	All			0.01	A ² s	

OUTPUT CHARACTERISTIC

PARAMETER	CONDITIONS	MODEL	Min.	Typical	Max.	Units
		Vo=5.0	4.85	5	5.15	
		Vo=12	11.64	12	12.36	
		Vo=15	14.55	15	15.45	
		Vo=±5.0	±4.85	±5	±5.15	
		Vo=±12	±11.64	±12	±12.36	
		Vo=±15	±14.55	±15	±15.45	
Output Voltage Regulation	1	1	1	1	1	
Line Regulation	For Vin Change of 1%	Single Dual			±1.2 ±1.2	% %
Load Regulation	lo=20% to 100%	Single Dual			±10.0	% %
Cross Regulation	Load cross variation 10%/100%	Dual			±5	%
Temperature Coefficient	$TC = -40^{\circ}C \text{ to } + 85^{\circ}C$				±0.05	%/°C
Output Voltage balance	Vin =Nominal Vin , lo = lo_max, Tc=25 $^{\circ}$ C	Dual			±1	%
Output Voltage Ripple and Noise						
· · · · · · · · · · · · · · · · · · ·	Full Load, 20 MHz, Output with 0.33uF Ceramic	Ceramic PT Models			75	
Peak-to-Peak	Capacitor	PS Models			120	mV
		Vo=5V	0		200	
		Vo=12V	0		84	
Operating Output Current Range		Vo=15V	0		67	mA
		Vo=±5V	0		±100	
		Vo=±12V	0		±42	
		Vo=±15V	0		±33	
Over Load	Vin=Nominal Vin, Output Voltage within Vo Set Point $\pm 5\%$			120		%
Output Short Circuit	Momentary	All			1	Sec
Maximum Output Capacitance	Full load, Resistance	Vo=5V Vo=12V Vo=15V			200 200 200	μF
Maximum output capacitance		Vo=±5V Vo=±12V Vo=±15V			100 100 100	μ

DYNAMIC CHARACTERISTICS

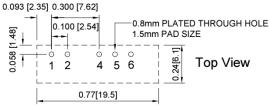
PARAMETER	CONDITIONS	MODEL	Min.	Typical	Max.	Units
Output Voltage Current Transient						
Step Change in Output Current	75% to 100% of I _{o_max}	All			±6	%
Setting Time (within 1% Vonominal)	di/dt=0.1A/us	All			500	μs
Turn-On Delay and Rise Time						
Turn-On Delay Time, From On/Off Control	Von/off to 10%Vo_set	All		1		ms
Turn-On Delay Time, From Input	Vin _min to 10%Vo_set	All		1		ms
Output Voltage Rise Time	10% V _{o_set} to 90% V _{o_set}	All		2.5		ms

FEATURE CHARACTERISTICS

PARAMETER	CONDITIONS		Device	Min.	Typical	Max.	Units
		PT5S5-0.2	or PS5S5-0.2		79		
		PT5S12-0.08	or PS5S12-0.08		79		
		PT5S15-0.06	or PS5S12-0.06		79		
		PT5D9-0.05	or PS5D9-0.05		78		
		PT5D12-0.04	or PS5D12-0.04		78		
		PT5D15-0.03	or PS5D15-0.03		74		
		PT12S5-0.2 or	PS12S5-0.2		80		
		PT12S12-0.08	or PS12S12-0.08		81		
		PT12S15-0.06	or PS12S12-0.06		81		
	Vin=Nominal Vin	PT12D12-0.04	PT12D12-0.04 or PS12D12-0.04		80		
		PT12D15-0.03	or PS12D15-0.03		81		
		PT12D5-0.1	or PS12D5-0.1		77		
		PT24S5-0.2			80		
		PT24	S12-0.08		83		
		PT24	S15-0.06		81		
			D12-0.04		81		
			D15-0.03		82		
		PT24	4D5-0.1		79		
ISOLATION CHARACTERISTICS							
Input to Output	1 minutes		All	1500			Volts
Isolation Resistance			All	1000			MΩ
Isolation Capacitance			All		500		pF
Switching Frequency			Vin=24 Volts		75		KHz
			Others		100		
MTBF	$I_0 = 100\% of I_{0_max}; Ta = 25^{\circ}$	C	All		1.5		М
	per MIL-HDBK-217F						hours
Weight			PT24 series		2.7		grams
			Others		1.8		9

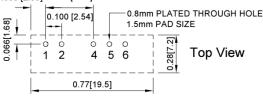
1 Watt Isolated DC-DC Converter

Operating Temperature Range


This PT/PS series of converters operate over the wide ambient temperature range from -40°C to +85°C. The case temperature should not go over +100°C during normal operating.

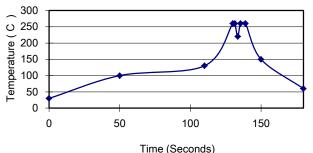
Output Short Circuit Protection

Avoid output short as much as possible because this series of converters have a momentary short-circuit protection (1 Second maximum).


Recommended PCB Layout/Footprints and Soldering Information

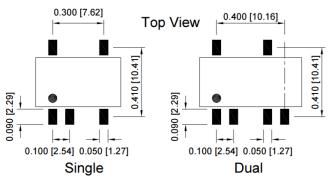
The user must ensure that other components and metal in the vicinity of the converter meet the spacing requirements to which the system is approved. Low resistance and low inductance PCB layout should be used where possible. Proper attention must also be given to low impedance tracks between power module, input and output grounds. The recommended footprints and soldering profiles are shown in the next two figures.

For 5Vin and 12Vin Model

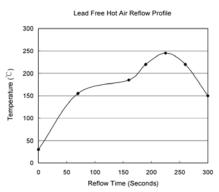


For 24Vin Model

Recommended PCB Layout Footprints Note: Dimensions are in inches (millimeters)



Recommended Wave Soldering Profiles for SIP models


Note :

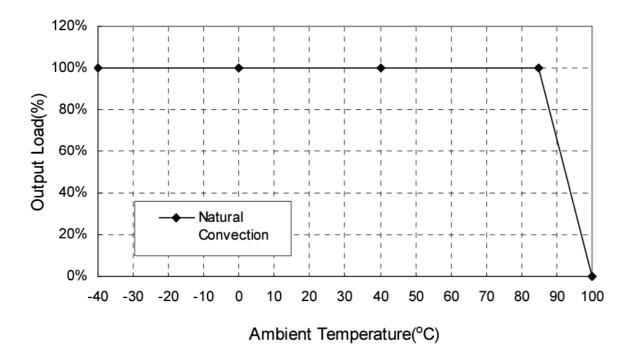
- 1. Soldering Materials: Sn/Cu/Ni
- 2. Ramp up rate during preheating: 1.4 °C/Sec (From +50°C to +100°C)
- 3. Soaking temperature: 0.5 °C/Sec (From +100°C to +130°C), 60 ± 20 seconds
- 4. Peak temperature: +260°C, above +250°C 3~6 Seconds
- 5. Ramp up rate during cooling: -10.0 °C/Sec (From +260°C to +150°C)

Note: Dimensions are in inches (millimeters)

Recommended PCB Layout/Footprints

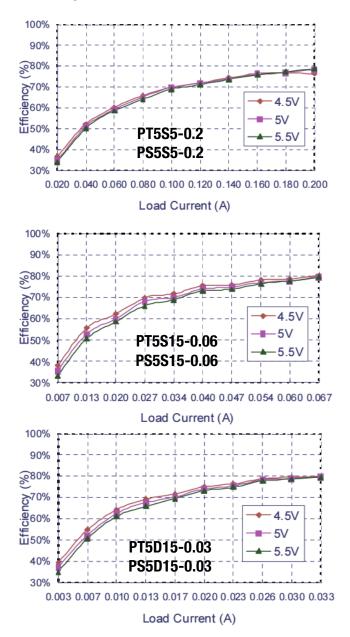
Note:

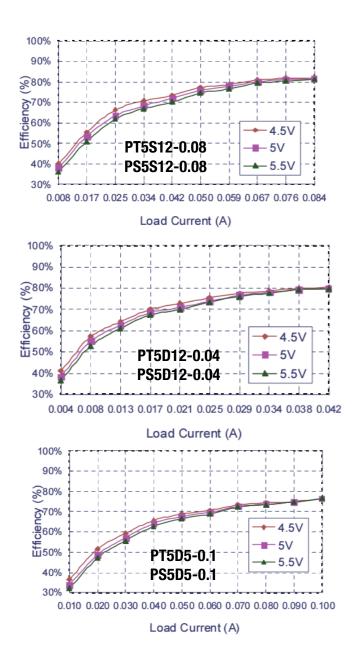
- 1. Soldering Paste: SHENMAO PF610-P (Sn/Ag/Cu)
- 2. Ramp up rate during preheat: 1.79° C /Sec (From 30° C to 155° C)
- 3. Soaking temperature: 0.33°C /Sec (From 155°C to 18°C)
- 4. Ramp up rate during reflow: 0.71° C/Sec (From 220 $^{\circ}$ C to 245 $^{\circ}$ C)
- 5. Peak temperature: 245 $^\circ\mathrm{C}$ (10Sec max), above 220 $^\circ\mathrm{C}$ $\,$ 40 to 70 Seconds
- 6. Ramp up rate during cooling: -1.75 $^{\circ}$ C /Sec (From 220 $^{\circ}$ C to 150 $^{\circ}$ C)


Recommended soldering profiles for SMD models

1 Watt Isolated DC-DC Converter

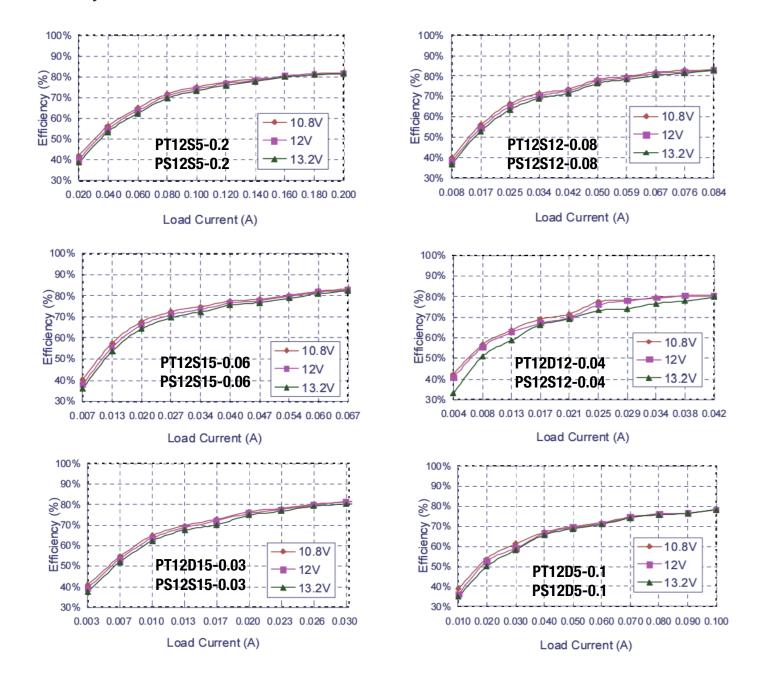
Power De-Rating Curves for PT Series

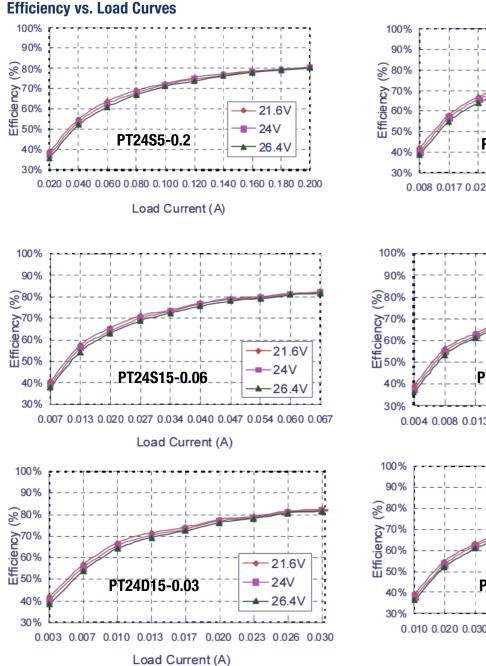

Note that the operating ambient temperature range is -40°C to + 85°C with derating above +85°C. It is recommended that the maximum case temperature under any operating condition should not exceed +100°C.



1 Watt Isolated DC-DC Converter

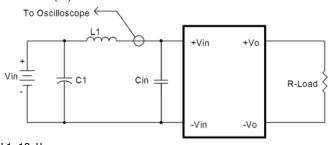
Efficiency vs. Load Curves




1 Watt Isolated DC-DC Converter

Efficiency vs. Load Curves

1 Watt Isolated DC-DC Converter


21.6V -24V PT24S12-0.08 -26.4V 0.008 0.017 0.025 0.034 0.042 0.050 0.059 0.067 0.076 0.084 Load Current (A) 21.6V 24V PT24D12-0.04 26.4V 0.004 0.008 0.013 0.017 0.021 0.025 0.029 0.034 0.038 0.042 Load Current (A) 21.6V ■24V PT24D5-0.1 26.4V 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100 Load Current (A)

1 Watt Isolated DC-DC Converter

Input Capacitance at the Power Module

In order to avoid problems with loop stability, the converter must be connected to a low impedance AC source and a low inductance source. The input capacitors (Cin) should be placed close to the converter input pins to de-couple distribution inductance. The external input capacitors should have low ESR in order to quiet any ripple. Circuit as shown in the figure below represents typical measurement methods for reflected ripple current The recommended input capacitors (Cin) should be low ESR capacitors for 5Vin and 12Vin models of 2.2 μ F, and 4.7 μ F for 24Vin model. Circuit as shown in the figure below represents typical measurement methods to reflected ripple current methods for reflected ripple current. C1 and L1 simulate a typical DC source impedance. The input reflected-ripple current is measured by a current probe oscilloscope with a simulated source Inductance (L1).

L1: 12uH C1: 2.2uF or 4.7uF Tantalum capacitor

Cin: None

Input Reflected-Ripple Test Setup

Test Set-Up

The basic test set-up to measure efficiency, load regulation, line regulation and other parameters is shown in the next figure. When testing the converter under any transient conditions, the user should ensure that the transient response of the source is sufficient to power the equipment under test. Below is the calculation of:

- 1- Efficiency
- 2- Load regulation
- 3- Line regulation

The value of efficiency is defined as:

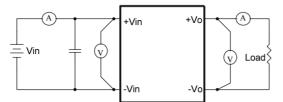
$$\eta = \frac{V_{O} \times I_{O}}{V_{IN} \times I_{IN}} \times 100\%$$

Where

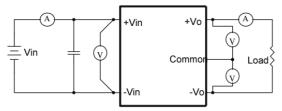
 V_0 is output voltage, I_0 is output current, V_{IN} is input voltage, I_{IN} is input current.

The value of load regulation is defined as:

$$Load.reg = \frac{V_{FL} - V_{NL}}{V_{NL}} \times 100\%$$

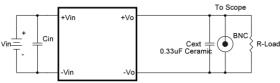

Where

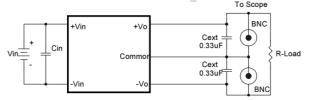
 V_{FL} is the output voltage at full load V_{NL} is the output voltage at 20% load


Line regulation is per 1.0% change in input voltage The value of line regulation is defined as:

$$Line.reg = \frac{\frac{V_{HL} - V_{LL}}{V_{NOM}} \times 100\%}{20}$$

Where: V_{HL} is the output voltage of maximum input voltage at full load. V_{LL} is the output voltage of minimum input voltage at full load. V_{NOM} is the output voltage of nominal input voltage at full load.


PT/PS Series Single output Test Setup


PT/PS Series Dual output Test Setup

Output Ripple and Noise Measurement

The test set-up for noise and ripple measurements is shown inthe two figures below. A coaxial cable was used to prevent impedance mismatch reflections disturbing the noise readings at higher frequencies. Measurements are taken with output appropriately loaded and all ripple/noise specifications are from D.C. to 20MHz Band Width. The output ripple/noise is measured with 0.33uF ceramic capacitor across output. The ripple and noise is measured by BNC at 50mm to 75mm (2" to 3") from the module.

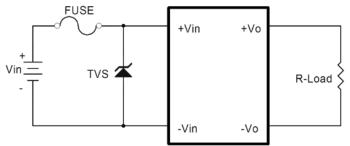
Ripple and noise measurement Test Setup for single output models

Ripple and Noise Measurement Set-Up for dual output models

Note for 5Vin, 12Vin models Cin with 2.2µF ceramic capacitor. * For 24Vin models Cin with 4.7µF ceramic capacitor.

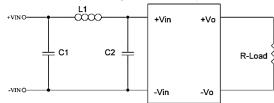
Output Capacitance

The PT/PS series of converters provide unconditional stability with or without external capacitors. For good transient response, low ESR output capacitors should be located closer to the point of load.


DATEL, Inc. 120 Forbes Boulevard, Suite 125, Mansfield MA 02048 USA • Tel (508)964-5131 • www.datel.com • e-mail:help@datel.com

SAFETY and EMC

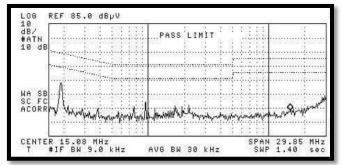
Input Fusing and Safety Considerations


The PT series of converters do not have an internal fuse. In order to achieve maximum safety and system protection, always use an input line fuse. We recommended a time delay fuse 0.5A for all models. The circuit in the figure below is recommended and it uses a Transient Voltage Suppressor diode across the input terminal to protect the unit against surge or spike voltage and input reverse voltage.

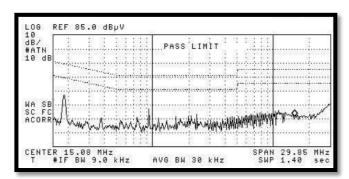
Input Protection

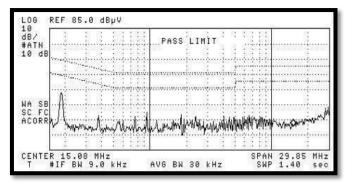
EMC Considerations

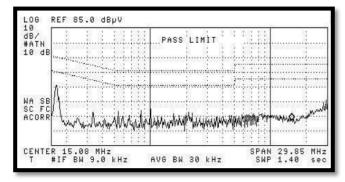
EMI Test standard: EN55022 Class B Conducted Emission Test Condition: Input Voltage: Nominal, Output Load: Full Load

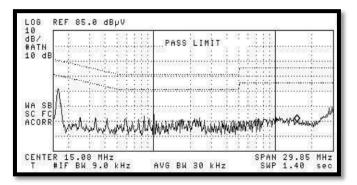

Connection circuit for conducted EMI testing

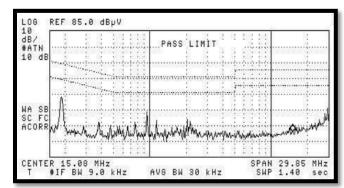
	EN55022 class B						
Model No.	C1	C2	L1				
PT/PS5S5-0.2	4.7µF/25V	4.7µF/25V	10µH				
PT/PS512-0.08	4.7µF/25V	4.7µF/25V	10µH				
PT/PS5S15-0.06	4.7µF/25V	4.7µF/25V	10µH				
PT/PS5D5-0.1	4.7µF/25V	4.7µF/25V	10µH				
PT/PS5D9-0.05	4.7µF/25V	4.7µF/25V	10µH				
PT/PS5D12-0.04	4.7µF/25V	4.7µF/25V	10µH				
PT/PS5D15-0.03	4.7µF/25V	4.7µF/25V	10µH				
PT/PS12S5-0.2	4.7µF/25V	4.7µF/25V	10µH				
PT/PS12S12-0.08	4.7µF/25V	4.7µF/25V	10µH				
PT/PS12S15-0.06	4.7µF/25V	4.7µF/25V	10µH				
PT/PS12D5-0.1	4.7µF/25V	4.7µF/25V 4.7µF/25V					
PT/PS12D12-0.04	4.7µF/25V	4.7µF/25V	10µH				
PT/PS12D15-0.03	4.7µF/25V	4.7µF/25V	10µH				
PT24S5-0.2	10µF/50V	10µF/50V	7.5µH				
PT2412-0.08	10µF/50V	10µF/50V	7.5µH				
PT24S15-0.06	10µF/50V	10µF/50V	7.5µH				
PT24D5-0.1	10µF/50V	10µF/50V	7.5µH				
PT24D12-0.04	10µF/50V	10µF/50V	7.5µH				
PT24D15-0.03	10µF/50V	10µF/50V	7.5µH				


Note: All of capacitors are ceramic capacitors

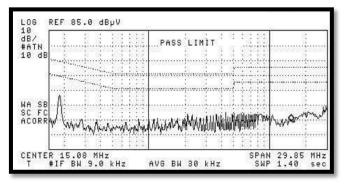

EMI and conducted noise meet EN55022 Class B


Class B Test conducted for PT/PS5S5-0.2

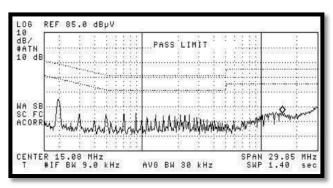

Class B Test conducted for PT/PS5S12-0.08


Class B Test conducted for PT/PS5S15-0.06

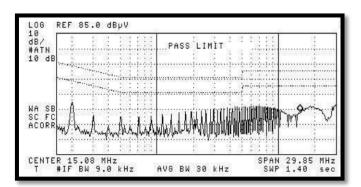
Class B Test conducted for PT/PS5D15-0.03



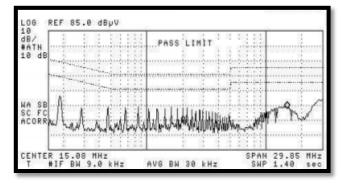
Class B Test conducted for PT/PS5D5-0.1



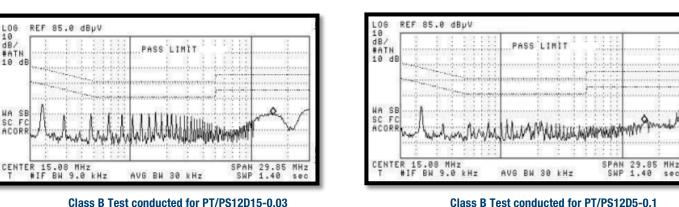
1 Watt Isolated DC-DC Converter


EMI and conducted noise meet EN55022 Class B

Class B Test conducted for PT/PS12S5-0.2

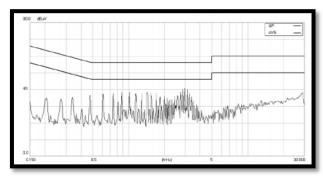


Class B Test conducted for PT/PS12S15-0.06

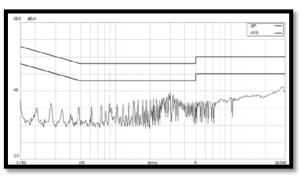

LOG

10 dB/ #ATN 10 dB

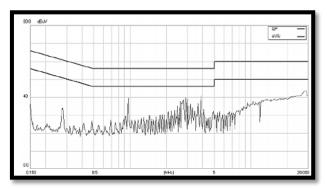
WA SE SC FC FC ACOR

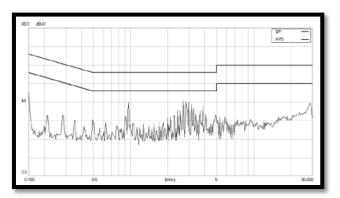


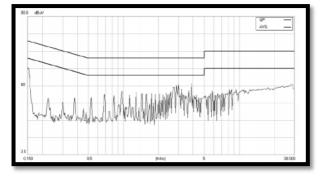
Class B Test conducted for PT/PS12D5-0.1

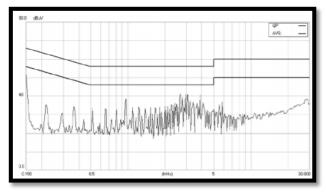


1 Watt Isolated DC-DC Converter


EMI and conducted noise meet EN55022 Class B

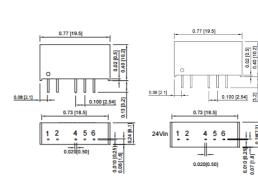

Class B Test conducted for PT24S5-0.2

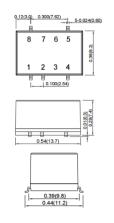

Class B Test conducted for PT24S12-0.08


Class B Test conducted for PT24S15-0.06

Class B Test conducted for PT24D15-0.03

Class A Test conducted for PT/PS12D12-0.04

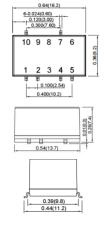

Class B Test conducted for PT24D5-0.1



1 Watt Isolated DC-DC Converter

MECHANICAL SPECIFICATIONS

Note: All dimensions are in millimeters (inches). Tolerance: x.xx ±0.01 in.(0.25mm), x.xxx ±0.005 in.(0.125 mm) and for pins ±0.002 in (±0.005) are unless otherwise noted



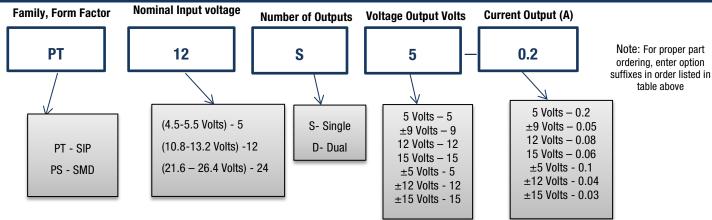
[10.2]

0.02

11 0.010 [0.25]

PT24 series

PS5 & PS12 S series dual output


PT5 & PT12 series

PIN CONNECTIONS

	PIN CONNECTION	IS PT Serie	es (SIP)	PIN CONNECTIONS PS Series			s (SMD)		
PIN	SINGLE OUTPUT	PIN	DUAL OUTPUTS	PIN	SINGLE OUTPUT	PIN	DUAL OUTPUTS		
1	+ V Input	1	+ V Input	1	- V Input	1	- V Input		
2	-V Input	2	-V Input	2	+V Input	2	+V Input		
3	-V Output	3	-V Output	3	No Pin	3	No Pin		
4	No Pin	4	No Pin	4	-V Output	4	Common		
5	No Pin	5	Common	5	+V Output	5	-V Output		
6	+V Output	6	+V Output	6	No Pin	6	No Pin		
7	No Pin	7	No Pin	7	No Pin	7	+V Output		
8	No Pin	8	No Pin	8	No Connection	8	No Pin		
9	No Pin	9	No Pin	9	No Pin	9	No Pin		
10	No Pin	10	No Pin	10	No Pin	8,9	No Connection		

PS5 & PS12 S series single output

PART NUMBER ORDERING INFORMATION

DATEL is a registered Trademark of DATEL, Inc. 120 Forbes Boulevard, Suite 125, Mansfield, MA 02048 USA ITAR and ISO 9001/2015 REGISTERED

DATEL, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.

www.datel.com • e-mail: help@datel.com